Swanson, L. W. & Kuypers, H. G. J. M. A direct projection from the ventromedial nucleus and retrochiasmatic area of the hypothalamus to the medulla and spinal cord of the rat. Neurosci. Lett. 17, 307–312 (1980).
Google Scholar
Elias, C. F. et al. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron 21, 1375–1385 (1998).
Google Scholar
Ionescu, E., Rohner-Jeanrenaud, F., Berthoud, H. R. & Jeanrenaud, B. Increases in plasma insulin levels in response to electrical stimulation of the dorsal motor nucleus of the vagus nerve. Endocrinology 112, 904–910 (1983).
Google Scholar
Kwon, E. et al. Optogenetic stimulation of the liver-projecting melanocortinergic pathway promotes hepatic glucose production. Nat. Commun. 11, 6295 (2020).
Google Scholar
Sohn, J.-W. W., Elmquist, J. K. & Williams, K. W. Neuronal circuits that regulate feeding behavior and metabolism. Trends Neurosci. 36, 504–512 (2013).
Google Scholar
Schneeberger, M. et al. Regulation of energy expenditure by brainstem GABA neurons. Cell 178, 672–685.e12 (2019).
Google Scholar
Li, L. et al. Knockdown of neuropeptide y in the dorsomedial hypothalamus promotes hepatic insulin sensitivity in male rats. Endocrinology 157, 4842–4852 (2016).
Google Scholar
Travagli, R. A., Hermann, G. E., Browning, K. N. & Rogers, R. C. Brainstem circuits regulating gastric function. Annu. Rev. Physiol. 68, 279–305 (2006).
Google Scholar
Blake, C. B. & Smith, B. N. Insulin reduces excitation in gastric-related neurons of the dorsal motor nucleus of the vagus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R807–R814 (2012).
Google Scholar
Varin, E. M. et al. Distinct neural sites of GLP-1R expression mediate physiological versus pharmacological control of incretin action. Cell Rep. 27, 3371–3384.e3 (2019).
Google Scholar
Alhadeff, A. L. et al. Endogenous glucagon-like peptide-1 receptor signaling in the nucleus tractus solitarius is required for food intake. Control. Neuropsychoprarmacol. 42, 1471–1479 (2017).
Google Scholar
Bai, L. et al. Genetic identification of vagal sensory neurons that control feeding. Cell 179, 1129–1143.e23 (2019).
Google Scholar
Kim, D. Y. et al. A neural circuit mechanism for mechanosensory feedback control of ingestion. Nature 580, 376–380 (2020).
Google Scholar
Bonaz, B., Bazin, T. & Pellissier, S. The vagus nerve at the interface of the microbiota-gut-brain axis. Front. Neurosci. 12, 49 (2018).
Google Scholar
Pradhananga, S., Tashtush, A. A., Allen-Vercoe, E., Petrof, E. O. & Lomax, A. E. Protease-dependent excitation of nodose ganglion neurons by commensal gut bacteria. J. Physiol. 598, 2137–2151 (2020).
Google Scholar
Gibbons, C. H. In Handbook of Clinical Neurology Vol. 160, 407–418 (Elsevier B.V., 2019).
Espinosa-Medina, I. et al. The sacral autonomic outflow is sympathetic. Science 354, 893–897 (2016).
Google Scholar
Yi, C.-X. X., la Fleur, S. E., Fliers, E. & Kalsbeek, A. The role of the autonomic nervous liver innervation in the control of energy metabolism. Biochim. Biophys. Acta 1802, 416–431 (2010).
Google Scholar
Appel, N. M. & Elde, R. P. The intermediolateral cell column of the thoracic spinal cord is comprised of target-specific subnuclei: evidence from retrograde transport studies and immunohistochemistry. J. Neurosci. 8, 1767–1775 (1988).
Google Scholar
Zhou, S. Y. & Gilbey, M. P. Respiratory‐related activity of lower thoracic and upper lumbar sympathetic preganglionic neurones in the rat. J. Physiol. 451, 631–642 (1992).
Google Scholar
François, M. et al. Sympathetic innervation of the interscapular brown adipose tissue in mouse. Ann. N. Y. Acad. Sci. 1454, 3–13 (2019).
Google Scholar
Li, W., Yu, G., Liu, Y. & Sha, L. Intrapancreatic ganglia and neural regulation of pancreatic endocrine secretion. Front. Neurosci. 13, 21 (2019).
Google Scholar
Bartness, T. J., Song, C. K., Shi, H., Bowers, R. R. & Foster, M. T. Brain–adipose tissue cross talk. Proc. Nutr. Soc. 64, 53–64 (2005).
Google Scholar
Li, M., Galligan, J., Wang, D. & Fink, G. The effects of celiac ganglionectomy on sympathetic innervation to the splanchnic organs in the rat. Auton. Neurosci. Basic Clin. 154, 66–73 (2010).
Google Scholar
Sohn, J. W. et al. Melanocortin 4 receptors reciprocally regulate sympathetic and parasympathetic preganglionic neurons. Cell 152, 612–619 (2013).
Google Scholar
Rossi, J. et al. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab. 13, 195–204 (2011).
Google Scholar
Yamatani, K. et al. Impaired vagus nerve-mediated control of insulin secretion in Wistar fatty rats. Metabolism 47, 1167–1173 (1998).
Google Scholar
Ahren, B., Veith, R. C. & Taborsky, G. J. Sympathetic nerve stimulation versus pancreatic norepinephrine infusion in the dog: 1) effects on basal release of insulin and glucagon. Endocrinology 121, 323–331 (1987).
Google Scholar
Moullé, V. S. et al. The autonomic nervous system regulates pancreatic β-cell proliferation in adult male rats. Am. J. Physiol. Endocrinol. Metab. 317, E234–E243 (2019).
Google Scholar
Pocal, A. et al. Hypothalamic KATP channels control hepatic glucose production. Nature 434, 1026–1031 (2005).
Google Scholar
Chan, T. M. & Exton, J. H. Studies on α-adrenergic activation of hepatic glucose output. Studies on α-adrenergic inhibition of hepatic pyruvate kinase and activation of gluconeogenesis. J. Biol. Chem. 253, 6393–6400 (1978).
Google Scholar
Bruinstroop, E., Fliers, E. & Kalsbeek, A. Hypothalamic control of hepatic lipid metabolism via the autonomic nervous system. Best. Pract. Res. Clin. Endocrinol. Metab. 28, 673–684 (2014).
Google Scholar
Tavares, F. L. & Seelaender, M. C. L. Hepatic denervation impairs the assembly and secretion of VLDL-TAG. Cell Biochem. Funct. 26, 557–565 (2008).
Google Scholar
Amir, M., Yu, M., He, P. & Srinivasan, S. Hepatic autonomic nervous system and neurotrophic factors regulate the pathogenesis and progression of non-alcoholic fatty liver disease. Front. Med. 7, 62 (2020).
Google Scholar
Bartness, T. J., Liu, Y., Shrestha, Y. B. & Ryu, V. Neural innervation of white adipose tissue and the control of lipolysis. Front. Neuroendocrinol 35, 473–493 (2014).
Google Scholar
Cao, Q., Jing, J., Cui, X., Shi, H. & Xue, B. Sympathetic nerve innervation is required for beigeing in white fat. Physiol. Rep. 7, e14031 (2019).
Google Scholar
Desautels, M. & Dulos, R. A. Effects of neonatal sympathectomy on brown fat development and susceptibility to high fat diet induced obesity in mice. Can. J. Physiol. Pharmacol. 69, 1868–1874 (1991).
Google Scholar
Virtanen, K. A. The rediscovery of BAT in adult humans using imaging. Best. Pract. Res. Clin. Endocrinol. Metab. 30, 471–477 (2016).
Google Scholar
Nascimento, A. I., Mar, F. M. & Sousa, M. M. The intriguing nature of dorsal root ganglion neurons: Linking structure with polarity and function. Prog. Neurobiol. 168, 86–103 (2018).
Google Scholar
Beutler, L. R. et al. Dynamics of gut-brain communication underlying hunger. Neuron 96, 461–475 (2017).
Google Scholar
Han, W. et al. A neural circuit for gut-induced reward. Cell 175, 665–678.e23 (2018).
Google Scholar
Grabauskas, G., Zhou, S. Y., Lu, Y., Song, I. & Owyang, C. Essential elements for glucosensing by gastric vagal afferents: immunocytochemistry and electrophysiology studies in the rat. Endocrinology 154, 296–307 (2013).
Google Scholar
Gautron, L. et al. Genetic tracing of Nav1.8-expressing vagal afferents in the mouse. J. Comp. Neurol. 519, 3085–3101 (2011).
Google Scholar
Udit, S. et al. Nav1.8 neurons are involved in limiting acute phase responses to dietary fat. Mol. Metab. 6, 1081–1091 (2017).
Google Scholar
de Lartigue, G., Ronveaux, C. C. & Raybould, H. E. Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity. Mol. Metab. 3, 595–607 (2014).
Google Scholar
Roman, C. W., Derkach, V. A. & Palmiter, R. D. Genetically and functionally defined NTS to PBN brain circuits mediating anorexia. Nat. Commun. 7, 11905 (2016).
Google Scholar
D’Agostino, G. et al. Appetite controlled by a cholecystokinin nucleus of the solitary tract to hypothalamus neurocircuit. Elife 5, e12225 (2016).
Google Scholar
D’Agostino, G. et al. Nucleus of the solitary tract serotonin 5-HT2C receptors modulate food intake. Cell Metab. 28, 619–630.e5 (2018).
Google Scholar
Aklan, I. et al. NTS catecholamine neurons mediate hypoglycemic hunger via medial hypothalamic feeding pathways. Cell Metab. 31, 313–326.e5 (2020).
Google Scholar
Panebianco, M., Rigby, A., Weston, J. & Marson, A. G. Vagus nerve stimulation for partial seizures. Cochrane Database Syst. Rev. 2015, CD002896 (2015).
Google Scholar
Carreno, F. R. & Frazer, A. Vagal nerve stimulation for treatment-resistant depression. Neurotherapeutics 14, 716–727 (2017).
Google Scholar
Yao, G. et al. Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat. Commun. 9, 5349 (2018).
Google Scholar
Pelot, N. A. & Grill, W. M. Effects of vagal neuromodulation on feeding behavior. Brain Res 1693, 180–187 (2018).
Google Scholar
Gil, K., Bugajski, A. & Thor, P. Electrical vagus nerve stimulation decreases food consumption and weight gain in rats fed a high-fat diet. J. Physiol. Pharmacol. 62, 637–646 (2011).
Google Scholar
Buijs, R. M., Chun, S. J., Niijima, A., Romijn, H. J. & Nagai, K. Parasympathetic and sympathetic control of the pancreas: A role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J. Comp. Neurol. 431, 405–423 (2001).
Google Scholar
Browning, K. N. & Travagli, R. A. Plasticity of vagal brainstem circuits in the control of gastric function. Neurogastroenterol. Motil. 22, 1154–1163 (2010).
Google Scholar
Blake, C. B. & Smith, B. N. cAMP-dependent insulin modulation of synaptic inhibition in neurons of the dorsal motor nucleus of the vagus is altered in diabetic mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R711–R720 (2014).
Google Scholar
Derbenev, A. V. & Smith, B. N. Dexamethasone rapidly increases GABA release in the dorsal motor nucleus of the vagus via retrograde messenger-mediated enhancement of TRPV1 activity. PLoS One 8, e70505 (2013).
Google Scholar
Boychuk, C. R. et al. A hindbrain inhibitory microcircuit mediates vagally-coordinated glucose regulation. Sci. Rep. 9, 2722 (2019).
Google Scholar
Browning, K. N. & Travagli, R. A. Neuropeptide Y and peptide YY inhibit excitatory synaptic transmission in the rat dorsal motor nucleus of the vagus. J. Physiol. 549, 775–785 (2003).
Google Scholar
Ju, S. H., Cho, G. B. & Sohn, J. W. Understanding melanocortin-4 receptor control of neuronal circuits: Toward novel therapeutics for obesity syndrome. Pharmacol. Res. 129, 10–19 (2018).
Google Scholar
Caverson, M. M., Ciriello, J. & Calaresu, F. R. Paraventricular nucleus of the hypothalamus: an electrophysiological investigation of neurons projecting directly to intermediolateral nucleus in the cat. Brain Res. 305, 380–383 (1984).
Google Scholar
Schiöth, H. B., Mutulis, F., Muceniece, R., Prusis, P. & Wikberg, J. E. S. Discovery of novel melanacortin4 receptor selective MSH analogues. Br. J. Pharm. 124, 75–82 (1998).
Google Scholar
Gregor Sutcliffe, J. & De Lecea, L. The hypocretins: excitatory neuromodulatory peptides for multiple homeostatic systems, including sleep and feeding. J. Neurosci. Res. 62, 161–168 (2000).
Google Scholar
Grabauskas, G. & Moises, H. C. Gastrointestinal-projecting neurones in the dorsal motor nucleus of the vagus exhibit direct and viscreotopically organized sensitivity to orexin. J. Physiol. 549, 37–56 (2003).
Google Scholar
Krowicki, Z. K. et al. Orexins in rat dorsal motor nucleus of the vagus potently stimulate gastric motor function. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G465–G472 (2002).
Google Scholar
Nakamura, K. et al. Identification of sympathetic premotor neurons in medullary raphe regions mediating fever and other thermoregulatory functions. J. Neurosci. 24, 5370–5380 (2004).
Google Scholar
Kumagai, H. et al. Importance of rostral ventrolateral medulla neurons in determining efferent sympathetic nerve activity and blood pressure. Hypertens. Res. 35, 132–141 (2012).
Google Scholar
Yue, C.-J., Feng, L. & Huang, Q. melanocortinergic-sympathetic signaling: a transneuronal labeling study using pseudorabies virus. Int. J. Clin. Exp. Pathol. 7, 7962–7966 (2014).
Google Scholar
Labbé, S. M. et al. Hypothalamic control of brown adipose tissue thermogenesis. Front. Syst. Neurosci. 9, 150 (2015).
Google Scholar
Yoshida, K., Li, X., Cano, G., Lazarus, M. & Saper, C. B. Parallel preoptic pathways for thermoregulation. J. Neurosci. 29, 11954–11964 (2009).
Google Scholar
Jeong, J. H. et al. Cholinergic neurons in the dorsomedial hypothalamus regulate mouse brown adipose tissue metabolism. Mol. Metab. 4, 483–492 (2015).
Google Scholar
Waterhouse, B. D., Devilbiss, D., Seiple, S. & Markowitz, R. Sensorimotor-related discharge of simultaneously recorded, single neurons in the dorsal raphe nucleus of the awake, unrestrained rat. Brain Res. 1000, 183–191 (2004).
Google Scholar
Dib, B., Rompré, P. P., Amir, S. & Shizgal, P. Thermogenesis in brown adipose tissue is activated by electrical stimulation of the rat dorsal raphe nucleus. Brain Res. 650, 149–152 (1994).
Google Scholar
Gross, P. M. & Weindl, A. Peering through the windows of the brain. J. Cereb. Blood Flow. Metab. 7, 663–672 (1987).
Google Scholar
Gross, P. M. Circumventricular organ capillaries. Prog. Brain Res. 91, 219–233 (1992).
Google Scholar
Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).
Google Scholar
Tartaglia, L. A. et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 83, 1263–1271 (1995).
Google Scholar
Friedman, J. M. & Halaas, J. L. Leptin and the regulation of body weight in mammals. Nature 395, 763–770 (1998).
Google Scholar
Chua, S. C. et al. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271, 994–996 (1996).
Google Scholar
Spiegelman, B. M. & Flier, J. S. Obesity and the regulation of energy balance. Cell 104, 531–543 (2001).
Google Scholar
Gautron, L. & Elmquist, J. K. Sixteen years and counting: an update on leptin in energy balance. J. Clin. Invest. 121, 2087–2093 (2011).
Google Scholar
Scott, M. M. et al. Leptin targets in the mouse brain. J. Comp. Neurol. 514, 518–532 (2009).
Google Scholar
Patterson, C. M., Leshan, R. L., Jones, J. C. & Myers, M. G. Molecular mapping of mouse brain regions innervated by leptin receptor-expressing cells. Brain Res. 1378, 18–28 (2011).
Google Scholar
Balthasar, N. et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 42, 983–991 (2004).
Google Scholar
Van De Wall, E. et al. Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology 149, 1773–1785 (2008).
Google Scholar
Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71, 142–154 (2011).
Google Scholar
Scott, M. M., Williams, K. W., Rossi, J., Lee, C. E. & Elmquist, J. K. Leptin receptor expression in hindbrain Glp-1 neurons regulates food intake and energy balance in mice. J. Clin. Invest. 121, 2413–2421 (2011).
Google Scholar
Zsombok, A. et al. Regulation of leptin receptor-expressing neurons in the brainstem by TRPV1. Physiol. Rep. 2, e12160 (2014).
Google Scholar
Williams, K. W., Zsombok, A. & Smith, B. N. Rapid inhibition of neurons in the dorsal motor nucleus of the vagus by leptin. Endocrinology 148, 1868–1881 (2007).
Google Scholar
Cork, S. C. et al. Distribution and characterisation of glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol. Metab. 4, 718–731 (2015).
Google Scholar
Wan, S., Coleman, F. H. & Travagli, R. A. Glucagon-like peptide-1 excites pancreas-projecting preganglionic vagal motoneurons. Am. J. Physiol. Gastrointest. Liver Physiol. 292, 1474–1482 (2007).
Google Scholar
Blackshaw, L. A. & Grundy, D. Effects of cholecystokinin (CCK-8) on two classes of gastroduodenal vagal afferent fibre. J. Auton. Nerv. Syst. 31, 191–201 (1990).
Google Scholar
Zheng, Z., Lewis, M. W. & Travagli, R. A. In vitro analysis of the effects of cholecystokinin on rat brain stem motoneurons. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G1066–G1073 (2005).
Google Scholar
Wan, S., Coleman, F. H. & Travagli, R. A. Cholecystokinin-8s excites identified rat pancreatic-projecting vagal motoneurons. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G484–G492 (2007).
Google Scholar
Mercer, L. D. & Beart, P. M. Histochemistry in rat brain and spinal cord with an antibody directed at the cholecystokinin(A) receptor. Neurosci. Lett. 225, 97–100 (1997).
Google Scholar
Glatzle, J., Kreis, M. E., Kawano, K., Raybould, H. E. & Zittel, T. T. Postprandial neuronal activation in the nucleus of the solitary tract is partly mediated by CCK-A receptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R222–R229 (2001).
Google Scholar
Babic, T. et al. Phenotype of neurons in the nucleus of the solitary tract that express CCK-induced activation of the ERK signaling pathway. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, 845–854 (2009).
Google Scholar
Fan, W. et al. Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system. Nat. Neurosci. 7, 335–336 (2004).
Google Scholar
Appleyard, S. M. et al. Proopiomelanocortin neurons in nucleus tractus solitarius are activated by visceral afferents: regulation by cholecystokinin and opioids. J. Neurosci. 25, 3578–3585 (2005).
Google Scholar