Orth, T., Paré, J. & Froehlich, J. E. Current concepts on the genetic factors in rotator cuff pathology and future implications for sports physical therapists. Int. J. Sports Phys. Ther. 12, 273–285 (2017).
Google Scholar
Birch, H., Rutter, G. & Goodship, A. Oxidative energy metabolism in equine tendon cells. Res. Vet. Sci. 62, 93–97 (1997).
Google Scholar
Sethi, P. M. et al. Macroscopic Rotator Cuff Tendinopathy and Histopathology Do Not Predict Repair Outcomes of Rotator Cuff Tears. Am. J. Sports Med. 036354651774698, https://doi.org/10.1177/0363546517746986, (2018).
Google Scholar
Lee, H.-J., Kim, Y.-S., Ok, J.-H. & Song, H.-J. Apoptosis Occurs Throughout the Diseased Rotator Cuff. Am. J. Sports Med. 41, 2249–2255 (2013).
Google Scholar
Morikawa, D. et al. Contribution of oxidative stress to the degeneration of rotator cuff entheses. J. Shoulder Elbow Surg. 23, 628–635 (2014).
Google Scholar
Benson, R. T. et al. Tendinopathy and tears of the rotator cuff are associated with hypoxia and apoptosis. J. Bone Jt. Surg. – Br. Vol. 92-B, 448–453 (2010).
Google Scholar
Liang, M. et al. Regulation of Hypoxia-Induced Cell Death in Human Tenocytes. Adv. Orthop. 2012, 1–12 (2012).
Google Scholar
Sharma, P. Tendon Injury and Tendinopathy: Healing and Repair. J. Bone Jt. Surg. Am. 87, 187 (2005).
Lukyanova, L. D. Mitochondrial Signaling in Hypoxia. Open J. Endocr. Metab. Dis. 03, 20–32 (2013).
Google Scholar
Fearon, U., Canavan, M., Biniecka, M. & Veale, D. J. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nat. Rev. Rheumatol. 12, 385–397 (2016).
Google Scholar
Millar, N. L. et al. Hypoxia: a critical regulator of early human tendinopathy. Ann. Rheum. Dis. 71, 302–310 (2012).
Google Scholar
Derbré, F. et al. Age associated low mitochondrial biogenesis may be explained by lack of response of PGC-1α to exercise training. AGE 34, 669–679 (2012).
Google Scholar
Chung, N., Park, J. & Lim, K. The effects of exercise and cold exposure on mitochondrial biogenesis in skeletal muscle and white adipose tissue. J. Exerc. Nutr. Biochem. 21, 39–47 (2017).
Google Scholar
Baar, K. Nutrition and the Adaptation to Endurance Training. Sports Med. 44, 5–12 (2014).
Google Scholar
Thankam, F. G., Dilisio, M. F. & Agrawal, D. K. Immunobiological factors aggravating the fatty infiltration on tendons and muscles in rotator cuff lesions. Mol. Cell. Biochem. 417, 17–33 (2016).
Google Scholar
Iacovelli, J. et al. PGC-1α Induces Human RPE Oxidative Metabolism and Antioxidant Capacity. Investig. Opthalmology Vis. Sci. 57, 1038 (2016).
Google Scholar
Solaini, G., Baracca, A., Lenaz, G. & Sgarbi, G. Hypoxia and mitochondrial oxidative metabolism. Biochim. Biophys. Acta BBA – Bioenerg. 1797, 1171–1177 (2010).
Google Scholar
Castilla, D. M., Liu, Z.-J. & Velazquez, O. C. Oxygen: Implications for Wound Healing. Adv. Wound Care 1, 225–230 (2012).
Google Scholar
Thankam, F. G. et al. Association of Inflammatory Responses and ECM Disorganization with HMGB1 Upregulation and NLRP3 Inflammasome Activation in the Injured Rotator Cuff Tendon. Sci. Rep. 8 (2018).
Liu, X., Manzano, G., Kim, H. T. & Feeley, B. T. A rat model of massive rotator cuff tears. J. Orthop. Res. 29, 588–595 (2011).
Google Scholar
Thomopoulos, S., Parks, W. C., Rifkin, D. B. & Derwin, K. A. Mechanisms of tendon injury and repair: Tendon injury and repair. J. Orthop. Res. 33, 832–839 (2015).
Google Scholar
Reuther, K. E. et al. Glenoid cartilage mechanical properties decrease after rotator cuff tears in a rat model. J. Orthop. Res. 30, 1435–1439 (2012).
Google Scholar
Lu, C. et al. Tibial fracture decreases oxygen levels at the site of injury. Iowa Orthop. J. 28, 14–21 (2008).
Google Scholar
Tohme, S. et al. Hypoxia mediates mitochondrial biogenesis in hepatocellular carcinoma to promote tumor growth through HMGB1 and TLR9 interaction: Tohme, Yazdani, et al. Hepatology 66, 182–197 (2017).
Google Scholar
Zhu, L. et al. Hypoxia induces PGC-1α expression and mitochondrial biogenesis in the myocardium of TOF patients. Cell Res. 20, 676–687 (2010).
Google Scholar
Sharma, N. et al. Use of Quantitative Membrane Proteomics Identifies a Novel Role of Mitochondria in Healing Injured Muscles. J. Biol. Chem. 287, 30455–30467 (2012).
Google Scholar
Du, C. et al. SOCS-1 is involved in TNF-α-induced mitochondrial dysfunction and apoptosis in renal tubular epithelial cells. Tissue Cell 49, 537–544 (2017).
Google Scholar
Cao, Y. et al. Proinflammatory Cytokines Stimulate Mitochondrial Superoxide Flashes in Articular Chondrocytes In Vitro and In Situ. PLoS ONE 8, e66444 (2013).
Google Scholar
Thankam, F. G., Dilisio, M. F., Dietz, N. E. & Agrawal, D. K. TREM-1, HMGB1 and RAGE in the Shoulder Tendon: Dual Mechanisms for Inflammation Based on the Coincidence of Glenohumeral Arthritis. PLOS ONE 11, e0165492 (2016).
Google Scholar
Chandel, N. S. et al. Reactive Oxygen Species Generated at Mitochondrial Complex III Stabilize Hypoxia-inducible Factor-1α during Hypoxia: A MECHANISM OF O2 SENSING. J. Biol. Chem. 275, 25130–25138 (2000).
Google Scholar
Baldelli, S., Aquilano, K. & Ciriolo, M. R. PGC-1α buffers ROS-mediated removal of mitochondria during myogenesis. Cell Death Dis. 5, e1515–e1515 (2014).
Google Scholar
Mahato, B. et al. Regulation of Mitochondrial Function and Cellular Energy Metabolism by Protein Kinase C-λ/ι: A Novel Mode of Balancing Pluripotency: PKCλ/ι Regulates Mitochondria in ESCs. STEM CELLS 32, 2880–2892 (2014).
Google Scholar
Schönenberger, M. J. Hypoxia signaling pathways: modulators of oxygen-related organelles. Front. Cell Dev. Biol. 3 (2015).
Cherry, A. D. & Piantadosi, C. A. Regulation of Mitochondrial Biogenesis and Its Intersection with Inflammatory Responses. Antioxid. Redox Signal. 22, 965–976 (2015).
Google Scholar
Piantadosi, C. A. & Suliman, H. B. Transcriptional control of mitochondrial biogenesis and its interface with inflammatory processes. Biochim. Biophys. Acta BBA – Gen. Subj. 1820, 532–541 (2012).
Google Scholar
Yuan, J., Murrell, G. A. C., Wei, A.-Q. & Wang, M.-X. Apoptosis in rotator cuff tendonopathy. J. Orthop. Res. 20, 1372–1379 (2002).
Google Scholar
Osti, L. et al. Apoptosis and rotator cuff tears: scientific evidence from basic science to clinical findings. Br. Med. Bull. 122, 123–133 (2017).
Google Scholar
Thankam, F. G., Boosani, C. S., Dilisio, M. F., Dietz, N. E. & Agrawal, D. K. MicroRNAs Associated with Shoulder Tendon Matrisome Disorganization in Glenohumeral Arthritis. PLOS ONE 11, e0168077 (2016).
Google Scholar
Westphal, D., Dewson, G., Czabotar, P. E. & Kluck, R. M. Molecular biology of Bax and Bak activation and action. Biochim. Biophys. Acta BBA – Mol. Cell Res. 1813, 521–531 (2011).
Google Scholar
Zhang, Y. et al. PGC-1α induces apoptosis in human epithelial ovarian cancer cells through a PPARγ-dependent pathway. Cell Res. 17, 363–373 (2007).
Google Scholar
Gabrielson, M., Björklund, M., Carlson, J. & Shoshan, M. Expression of Mitochondrial Regulators PGC1α and TFAM as Putative Markers of Subtype and Chemoresistance in Epithelial Ovarian Carcinoma. PLoS ONE 9, e107109 (2014).
Google Scholar
D’Errico, I. et al. Bax is necessary for PGC1α pro-apoptotic effect in colorectal cancer cells. Cell Cycle Georget. Tex 10, 2937–2945 (2011).
Google Scholar
Carré, M. et al. Tubulin Is an Inherent Component of Mitochondrial Membranes That Interacts with the Voltage-dependent Anion Channel. J. Biol. Chem. 277, 33664–33669 (2002).
Google Scholar
Bernardi, P. & Di Lisa, F. The mitochondrial permeability transition pore: Molecular nature and role as a target in cardioprotection. J. Mol. Cell. Cardiol. 78, 100–106 (2015).
Google Scholar
Rostovtseva, T. K. et al. Tubulin binding blocks mitochondrial voltage-dependent anion channel and regulates respiration. Proc. Natl. Acad. Sci. 105, 18746–18751 (2008).
Google Scholar
Kannus, P. Structure of the tendon connective tissue. Scand. J. Med. Sci. Sports 10, 312–320 (2000).
Google Scholar
Vincent, A. E. et al. The Spectrum of Mitochondrial Ultrastructural Defects in Mitochondrial Myopathy. Sci. Rep. 6 (2016).
Picard, M., White, K. & Turnbull, D. M. Mitochondrial morphology, topology, and membrane interactions in skeletal muscle: a quantitative three-dimensional electron microscopy study. J. Appl. Physiol. 114, 161–171 (2013).
Google Scholar
Gutsaeva, D. R. et al. Transient Hypoxia Stimulates Mitochondrial Biogenesis in Brain Subcortex by a Neuronal Nitric Oxide Synthase-Dependent Mechanism. J. Neurosci. 28, 2015–2024 (2008).
Google Scholar
Fox, A. J. S. et al. Fluoroquinolones Impair Tendon Healing in a Rat Rotator Cuff Repair Model: A Preliminary Study. Am. J. Sports Med. 42, 2851–2859 (2014).
Google Scholar
Nie, S., Yue, H., Zhou, J. & Xing, D. Mitochondrial-Derived Reactive Oxygen Species Play a Vital Role in the Salicylic Acid Signaling Pathway in Arabidopsis thaliana. PLOS ONE 10, e0119853 (2015).
Google Scholar
Arrázola, M. S., Ramos-Fernández, E., Cisternas, P., Ordenes, D. & Inestrosa, N. C. Wnt Signaling Prevents the Aβ Oligomer-Induced Mitochondrial Permeability Transition Pore Opening Preserving Mitochondrial Structure in Hippocampal Neurons. PLOS ONE 12, e0168840 (2017).
Google Scholar