Tsutsui, H. et al. JCS 2017/JHFS 2017 Guidelines for Diagnosis and Treatment of Acute and Chronic Heart Failure. https://www.j-circ.or.jp/cms/wp-content/uploads/2017/06/JCS2017_tsutsui_h.pdf (2017).
Shiba, N. & Shimokawa, H. Chronic heart failure in Japan: Implications of the CHART studies. Vasc. Health Risk Manag. 4, 103–113 (2008).
Google Scholar
Braunwald, E. & Bristow, M. R. Congestive heart failure: Fifty years of progress. Circulation 102, IV14-23 (2000).
Google Scholar
Hsu, C. Y., Heieh, P. L., Hsiao, S. F. & Chien, M. Y. Effects of exercise training on autonomic function in chronic heart failure: Systematic review. Biomed. Res. Int. https://doi.org/10.1155/2F2015/2F591708 (2015).
Google Scholar
Pearson, M. J. & Smart, N. A. Exercise therapy and autonomic function in heart failure patients: A systematic review and meta-analysis. Heart Fail Rev. 23, 91–108 (2018).
Google Scholar
White, D. W. & Raven, P. B. Autonomic neural control of heart rate during dynamic exercise: Revisited. J. Physiol. 592, 2491–2500 (2014).
Google Scholar
Rossi Caruso, F. C. et al. Heart rate autonomic responses during deep breathing and walking in hospitalised patients with chronic heart failure. Disabil. Rehabil. 33, 751–757 (2011).
Google Scholar
Notarius, C. H. et al. Divergent muscle sympathetic responses to dynamic leg exercise in heart failure and age-matched healthy subjects. J. Physiol. 593, 715–722 (2015).
Google Scholar
Panza, J. A., Diodati, J. G., Callahan, T. S., Epstein, S. E. & Quyyumi, A. A. Role of increases in heart rate in determining the occurrence and frequency of myocardial ischemia during daily life in patients with stable coronary artery disease. J. Am. Coll. Cardiol. 20, 1092–1098 (1992).
Google Scholar
Gullestad, L. et al. Postexercise ischemia is associated with increased neuropeptide Y in patients with coronary artery disease. Circulation 102, 987–993 (2000).
Google Scholar
Adamson, P. B., Suarez, J., Ellis, E., Kanaly, T. & Vanoli, E. Ephedrine increases ventricular arrhythmias in conscious dogs after myocardial infarction. J. Am. Coll. Cardiol. 44, 1675–1678 (2004).
Google Scholar
Tan, A. Y. et al. Persistent proarrhythmic neural remodeling despite recovery from premature ventricular contraction-induced cardiomyopathy. J. Am. Coll. Cardiol. 75, 1–13 (2020).
Google Scholar
Christa, E. et al. Effect of yoga-based cardiac rehabilitation on heart rate variability: Randomized controlled trial in patients post-MI. Int. J. Yoga Therap. 29, 43–50 (2019).
Google Scholar
Figueroa, M. A., Demeersman, R. E. & Manning, J. The autonomic and rate pressure product responses of tai chi practitioners. N. Am. J. Med. Sci. 4, 270–275 (2012).
Google Scholar
Kawai, E., Nakahara, H., Ueda, S. Y., Manabe, K. & Miyamoto, T. A novel approach for evaluating the effects of odor stimulation on dynamic cardiorespiratory functions. PLoS One 12, 1–13 (2017).
Google Scholar
Lin, P. H. et al. Effect of aromatherapy on autonomic nervous system regulation with treadmill exercise-induced stress among adolescents. PLoS One 16, 1–13 (2021).
Kim, C. & Song, C. Physiological and psychological relaxation effects of fir essential oil on university students. Int. J. Environ. Res. Public Health 19, 5063 (2022).
Google Scholar
Matsumoto, T., Kimura, T. & Hayashi, T. Aromatic effects of a Japanese citrus fruit-yuzu (Citrus junos Sieb. ex Tanaka)-on psychoemotional states and autonomic nervous system activity during the menstrual cycle: A single-blind randomized controlled crossover study. Biopsychosoc. Med. https://doi.org/10.1186/2Fs13030-016-0063-7 (2016).
Google Scholar
Matsumoto, T., Asakura, H. & Hayashi, T. Does lavender aromatherapy alleviate premenstrual emotional symptoms?: A randomized crossover trial. Biopsychosoc. Med. https://doi.org/10.1186/1751-0759-7-12 (2013).
Google Scholar
Ikei, H., Song, C. & Miyazaki, Y. Physiological effect of olfactory stimulation by Hinoki cypress (Chamaecyparis obtusa) leaf oil. J. Physiol. Anthropol. https://doi.org/10.1186/2Fs40101-015-0082-2 (2015).
Google Scholar
Kwon, S., Ahn, J. & Jeon, H. Can aromatherapy make people feel better throughout exercise?. Int. J. Environ. Res. Public Health https://doi.org/10.3390/2Fijerph17124559 (2020).
Google Scholar
Kim, M., Nam, E. S., Lee, Y. & Kang, H. J. Effects of lavender on anxiety, depression, and physiological parameters: Systematic review and meta-analysis. Asian Nurs. Res. (Korean Soc. Nurs. Sci.) 15, 279–290 (2021).
Google Scholar
AlMohammed, H. I., Alanazi, N., Maghrabi, E. F. & Alotaibi, M. Role of aromatherapy as a natural complementary and alternative therapy in cardiovascular disease: A comprehensive systematic review. Evid. Based Complement. Alternat. Med. https://doi.org/10.1155/2F2022/2F4543078 (2022).
Google Scholar
Kayacan, Y., Makaraci, Y., Ozgocer, T., Ucar, C. & Yildiz, S. Cortisol awakening response and heart rate variability in the menstrual cycle of sportswomen. Res. Q. Exerc. Sport 92, 760–769 (2021).
Google Scholar
Yildirir, A., Kabakci, G., Akgul, E., Tokgozoglu, L. & Oto, A. Effects of menstrual cycle on cardiac autonomic innervation as assessed by heart rate variability. Ann. Noninvasive Electrocardiol. 7, 60–63 (2002).
Google Scholar
Frye, R. E., Schwartz, B. S. & Doty, R. L. Dose-related effects of cigarette smoking on olfactory function. JAMA 263, 1233–1236 (1990).
Google Scholar
Black, N. et al. Circadian rhythm of cardiac electrophysiology, arrhythmogenesis, and the underlying mechanisms. Heart Rhythm 16, 298–307 (2019).
Google Scholar
Riganello, F., Prada, V., Soddu, A., di Perri, C. & Sannita, W. G. Circadian rhythms and measures of CNS/Autonomic interaction. Int. J. Environ. Res. Public Hearlth https://doi.org/10.3390/2Fijerph16132336 (2019).
Google Scholar
Bunsawat, K., White, D. W., Kappus, R. M. & Baynard, T. Caffeine delays autonomic recovery following acute exercise. Eur. J. Prev. Cardiol. 22, 1473–1479 (2015).
Google Scholar
Clark, N. W. et al. Heart rate variability behavior during exercise and short-term recovery following energy drink consumption in men and women. Nutrients https://doi.org/10.3390/2Fnu12082372 (2020).
Google Scholar
Serra, S. M. et al. Cholinergic stimulation improves autonomic and hemodynamic profile during dynamic exercise in patients with heart failure. J. Card. Fail. 15, 124–129 (2009).
Google Scholar
Makita, S. et al. JCS/JACR 2021 guideline on rehabilitation in patients with cardiovascular disease. Circ. J. 87, 155–235 (2022).
Google Scholar
Sun, M. et al. Physiological and psychological effects of volatile organic compounds from dried common rush (Juncus effusus L. var decipiens Buchen) on humans. Int. J. Environ. Res. Public Hearlth https://doi.org/10.3390/2Fijerph19031856 (2022).
Google Scholar
Ekman, G. et al. Perceived intensity of odor as a function of time of adaptation. Scand. J. Psychol. 8, 177–186 (1967).
Google Scholar
Dalton, P. & Wysocki, C. J. The nature duration of adaptation following long-term odor exposure. Percept. Psychophys. 58, 781–792 (1996).
Google Scholar
Inoue, N., Kuroda, K., Sugimoto, A., Kakuda, T. & Fushiki, T. Autonomic nervous responses according to preference for the odor of jasmine tea. Biosci. Biotechnol. Biochem. 67, 1206–1214 (2003).
Google Scholar
Nagai, M., Wada, M., Usui, N., Tanaka, A. & Hasebe, Y. Pleasant odors attenuate the blood pressure increase during rhythmic handgrip in humans. Neurosci. Lett. 289, 227–229 (2000).
Google Scholar
Chrea, C. et al. Mapping the semantic space for the subjective experience of emotional responses to odors. Chem. Senses 34, 49–62 (2009).
Google Scholar
Thayer, J. F., Ahs, F., Fredrikson, M., Sollers, J. J. 3rd. & Wager, T. D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 36, 747–756 (2012).
Google Scholar
Malik, M. et al. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task force of the european society of cardiology and the North American society of pacing and electrophysiology. Eur. Heart J. 17, 354–381 (1996).
Google Scholar
Bruma, J. S. et al. The validity and reliability of ultra-short-term heart rate variability parameters and the influence of physiological covariates. J. Appl. Physiol. 1985(130), 1848–1867 (2021).
Google Scholar
Melo, H. M. et al. Ultra-short heart rate variability recording reliability: The effect of controlled paced breathing. Ann. Noninvasive Electrocardiol. https://doi.org/10.1111/2Fanec.12565 (2018).
Google Scholar
Borg, G. A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 14, 377–381 (1982).
Google Scholar
Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 48, 452–458 (2013).
Google Scholar
Backhouse, S. H., Ekkekakis, P., Bidle, S. J., Foskett, A. & Williams, C. Exercise makes people feel better but people are inactive: Paradox or artifact?. J. Sport Exerc. Psychol. 29, 498–517 (2007).
Google Scholar
Welch, A. S., Hulley, A. & Beauchamp, M. Affect and self-efficacy responses during moderate-intensity exercise among low-active women: The effect of cognitive appraisal. J. Sport Exerc. Psychol. 32, 154–175 (2010).
Google Scholar
Soudry, Y., Lemogne, C., Malinvaud, D., Consoli, S. M. & Bonfils, P. Olfactory system and emotion: Common substrates. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 128, 18–23 (2011).
Google Scholar
Goldberger, J. J. et al. Assessment of parasympathetic reactivation after exercise. Am. J. Physiol. Heart Circ. Physiol. 290, 2446–2452 (2006).
Google Scholar
Shaffer, F. & Ginsberg, J. P. An overview of heart rate variability metrics and norms. Front. Public Health https://doi.org/10.3389/2Ffpubh.2017.00258 (2017).
Google Scholar
Stein, P. K., Bosner, M. S., Kleiger, R. E. & Conger, B. M. Heart rate variability: A measure of cardiac autonomic tone. Am. Heart J. 127, 1376–1381 (1994).
Google Scholar
Wang, H. M. & Huang, S. C. SDNN/RMSSD as a surrogate for LF/HF: A revised investigation. Model. Simul. Eng. https://doi.org/10.1155/2012/931943 (2012).
Google Scholar
Jung, D. J., Cha, J. Y., Kim, S. E., Ko, I. G. & Jee, Y. S. Effects of Ylang-Ylang aroma on blood pressure and heart rate in healthy men. J. Exerc. Rehabil. 9, 250–255 (2013).
Google Scholar
Alaoui-Ismaïli, O., Robin, O., Rada, H., Dittmar, A. & Vernet-Maury, E. Basic emotions evoked by odorants: Comparison between autonomic responses and self-evaluation. Physiol. Behav. 62, 713–720 (1997).
Google Scholar
Horii, Y., Nagai, K. & Nakashima, T. Order of exposure to pleasant and unpleasant odors affects autonomic nervous system response. Behav. Brain Res. 243, 109–117 (2013).
Google Scholar
Sayorwan, W. et al. The effects of lavender oil inhalation on emotional states, autonomic nervous system, and brain electrical activity. J. Med. Assoc. Thai 95, 598–606 (2012).
Google Scholar
Salamati, A., Mashouf, S. & Mojab, F. Effect of inhalation of lavender essential oil on vital signs in open heart surgery ICU. Iran J. Pharm. Res. 16, 404–409 (2017).
Google Scholar
Abdelhakim, A. M., Hussein, A. S., Doheim, M. F. & Sayed, A. K. The effect of inhalation aromatherapy in patients undergoing cardiac surgery: A systematic review and meta-analysis of randomized controlled trials. Complement. Ther. Med. https://doi.org/10.1016/j.ctim.2019.102256 (2020).
Google Scholar
Spranger, M. D., Krishnan, A. C., Levy, P. D., O’Leary, D. S. & Smith, S. A. Blood flow restriction training and the exercise pressor reflex: A call for concern. Am. J. Physiol. Heart. Circ. Physiol. 309, 1440–1452 (2015).
Google Scholar
Mitchell, J. H. Neural control of the circulation during exercise: Insights from the 1970–1971 Oxford studies. Exp. Physiol. 97, 14–19 (2012).
Google Scholar
Mitchell, J. H. & Victor, R. G. Neural control of the cardiovascular system: Insights from muscle sympathetic nerve recordings in humans. Med. Sci. Sports Exerc. 28, 60–69 (1996).
Google Scholar
Duan, X. et al. Autonomic nervous function and localization of cerebral activity during lavender aromatic immersion. Technol. Health Care 15, 69–78 (2007).
Google Scholar
Goepfert, M. et al. Aroma oil therapy in palliative care: A pilot study with physiological parameters in conscious as well as unconscious patients. J. Cancer Res. Clin. Oncol. 143, 2123–2129 (2017).
Google Scholar
Scherr, J. et al. Associations between Borg’s rating of perceived exertion and physiological measures of exercise intensity. Eur. J. Appl. Physiol. 113, 147–155 (2013).
Google Scholar
Chen, M. J., Fan, X. & Moe, S. T. Criterion-related validity of the Borg ratings of perceived exertion scale in healthy individuals: A meta-analysis. J. Sports Sci. 20, 873–899 (2002).
Google Scholar
Eckberg, D. L. Sympathovagal balance: A critical appraisal. Circulation 96, 3224–3232 (1997).
Google Scholar
DeBeck, L. D., Petersen, S. R., Jones, K. E. & Stickland, M. K. Heart rate variability and muscle sympathetic nerve activity response to acute stress: The effect of breathing. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, 80–91 (2010).
Google Scholar
Vanderlei, L. C., Pastre, C. M., Hoshi, R. A., Carvalho, T. D. & Godoy, M. F. Basic notions of heart rate variability and its clinical applicability. Rev. Bras. Cir. Cardiovasc. 24, 205–217 (2009).
Google Scholar
Saboul, D., Pialoux, V. & Hautier, C. The impact of breathing on HRV measurements: Implications for the longitudinal follow-up of athletes. Eur. J. Sport Sci. 13, 534–542 (2013).
Google Scholar
Hill, L. K. & Siebenbrock, A. Are all measures created equal? Heart rate variability and respiration – Biomed 2009. Biomed. Sci. Instrum. 45, 71–76 (2009).
Google Scholar
Dunn, C., Sleep, J. & Collett, D. Sensing an improvement: An experimental study to evaluate the use of aromatherapy, massage and periods of rest in an intensive care unit. J. Adv. Nurs. 21, 34–40 (1995).
Google Scholar
Michael, S. et al. Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals-a review. Front. Physiol. 8, 259883 (2017).
Google Scholar
Cheraghbeigi, N., Modarresi, M., Rezaei, M. & Khatony, A. Comparing the effects of massage and aromatherapy massage with lavender oil on sleep quality of cardiac patients: A randomized controlled trial. Complement. Ther. Clin. Pract. 35, 253–258 (2019).
Google Scholar
Jodaki, K. et al. Effect of rosa damascene aromatherapy on anxiety and sleep quality in cardiac patients: A randomized controlled trial. Complement. Ther. Clin. Pract. https://doi.org/10.1016/j.ctcp.2020.101299 (2021).
Google Scholar
Shirzadegan, R., Gholami, M., Hasanvand, S., Birjandi, M. & Beiranvand, A. Effects of geranium aroma on anxiety among patients with acute myocardial infarction: A triple-blind randomized clinical trial. Complement. Ther. Clin. Pract. 29, 201–206 (2017).
Google Scholar