Close Menu
  • Home
  • Wellness
    • Women’s Health
    • Anti-Aging
    • Mental Health
  • Alternate Healing
    • Energy Healing
    • Aromatherapy
    • Acupuncture
    • Hypnotherapy
    • Ayurveda
    • Herbal Remedies
    • Flower Essences
    • Naturopathy
  • Spirituality
    • Meditation
    • Pilates & Yoga
  • Nutrition
    • Vitamins & Supplements
    • Recipes
  • Shop

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

What's Hot

4 supplements you should absolutely avoid, found at HomeGoods

July 30, 2024

This anti-aging snail slime serum is just $14 (over 40% off), so grab it!

July 30, 2024

Book Review: The subtle power of emotional abuse

July 30, 2024
Facebook X (Twitter) Instagram
  • Home
  • About us
  • Advertise with Us
  • Contact us
  • DMCA Policy
  • Privacy Policy
  • Terms and Conditions
Login
0 Shopping Cart
The Holistic Healing
  • Home
  • Wellness
    • Women’s Health
    • Anti-Aging
    • Mental Health
  • Alternate Healing
    • Energy Healing
    • Aromatherapy
    • Acupuncture
    • Hypnotherapy
    • Ayurveda
    • Herbal Remedies
    • Flower Essences
    • Naturopathy
  • Spirituality
    • Meditation
    • Pilates & Yoga
  • Nutrition
    • Vitamins & Supplements
    • Recipes
  • Shop
The Holistic Healing
Home » Autonomic control of energy balance and glucose homeostasis
Energy Healing

Autonomic control of energy balance and glucose homeostasis

theholisticadminBy theholisticadminApril 26, 2022No Comments15 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr Email Reddit
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Swanson, L. W. & Kuypers, H. G. J. M. A direct projection from the ventromedial nucleus and retrochiasmatic area of the hypothalamus to the medulla and spinal cord of the rat. Neurosci. Lett. 17, 307–312 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Elias, C. F. et al. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron 21, 1375–1385 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ionescu, E., Rohner-Jeanrenaud, F., Berthoud, H. R. & Jeanrenaud, B. Increases in plasma insulin levels in response to electrical stimulation of the dorsal motor nucleus of the vagus nerve. Endocrinology 112, 904–910 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kwon, E. et al. Optogenetic stimulation of the liver-projecting melanocortinergic pathway promotes hepatic glucose production. Nat. Commun. 11, 6295 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sohn, J.-W. W., Elmquist, J. K. & Williams, K. W. Neuronal circuits that regulate feeding behavior and metabolism. Trends Neurosci. 36, 504–512 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schneeberger, M. et al. Regulation of energy expenditure by brainstem GABA neurons. Cell 178, 672–685.e12 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, L. et al. Knockdown of neuropeptide y in the dorsomedial hypothalamus promotes hepatic insulin sensitivity in male rats. Endocrinology 157, 4842–4852 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Travagli, R. A., Hermann, G. E., Browning, K. N. & Rogers, R. C. Brainstem circuits regulating gastric function. Annu. Rev. Physiol. 68, 279–305 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blake, C. B. & Smith, B. N. Insulin reduces excitation in gastric-related neurons of the dorsal motor nucleus of the vagus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R807–R814 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Varin, E. M. et al. Distinct neural sites of GLP-1R expression mediate physiological versus pharmacological control of incretin action. Cell Rep. 27, 3371–3384.e3 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alhadeff, A. L. et al. Endogenous glucagon-like peptide-1 receptor signaling in the nucleus tractus solitarius is required for food intake. Control. Neuropsychoprarmacol. 42, 1471–1479 (2017).

    CAS 

    Google Scholar 

  • Bai, L. et al. Genetic identification of vagal sensory neurons that control feeding. Cell 179, 1129–1143.e23 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, D. Y. et al. A neural circuit mechanism for mechanosensory feedback control of ingestion. Nature 580, 376–380 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bonaz, B., Bazin, T. & Pellissier, S. The vagus nerve at the interface of the microbiota-gut-brain axis. Front. Neurosci. 12, 49 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pradhananga, S., Tashtush, A. A., Allen-Vercoe, E., Petrof, E. O. & Lomax, A. E. Protease-dependent excitation of nodose ganglion neurons by commensal gut bacteria. J. Physiol. 598, 2137–2151 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gibbons, C. H. In Handbook of Clinical Neurology Vol. 160, 407–418 (Elsevier B.V., 2019).

  • Espinosa-Medina, I. et al. The sacral autonomic outflow is sympathetic. Science 354, 893–897 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yi, C.-X. X., la Fleur, S. E., Fliers, E. & Kalsbeek, A. The role of the autonomic nervous liver innervation in the control of energy metabolism. Biochim. Biophys. Acta 1802, 416–431 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Appel, N. M. & Elde, R. P. The intermediolateral cell column of the thoracic spinal cord is comprised of target-specific subnuclei: evidence from retrograde transport studies and immunohistochemistry. J. Neurosci. 8, 1767–1775 (1988).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, S. Y. & Gilbey, M. P. Respiratory‐related activity of lower thoracic and upper lumbar sympathetic preganglionic neurones in the rat. J. Physiol. 451, 631–642 (1992).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • François, M. et al. Sympathetic innervation of the interscapular brown adipose tissue in mouse. Ann. N. Y. Acad. Sci. 1454, 3–13 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Li, W., Yu, G., Liu, Y. & Sha, L. Intrapancreatic ganglia and neural regulation of pancreatic endocrine secretion. Front. Neurosci. 13, 21 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bartness, T. J., Song, C. K., Shi, H., Bowers, R. R. & Foster, M. T. Brain–adipose tissue cross talk. Proc. Nutr. Soc. 64, 53–64 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, M., Galligan, J., Wang, D. & Fink, G. The effects of celiac ganglionectomy on sympathetic innervation to the splanchnic organs in the rat. Auton. Neurosci. Basic Clin. 154, 66–73 (2010).

    Article 

    Google Scholar 

  • Sohn, J. W. et al. Melanocortin 4 receptors reciprocally regulate sympathetic and parasympathetic preganglionic neurons. Cell 152, 612–619 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rossi, J. et al. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab. 13, 195–204 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamatani, K. et al. Impaired vagus nerve-mediated control of insulin secretion in Wistar fatty rats. Metabolism 47, 1167–1173 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ahren, B., Veith, R. C. & Taborsky, G. J. Sympathetic nerve stimulation versus pancreatic norepinephrine infusion in the dog: 1) effects on basal release of insulin and glucagon. Endocrinology 121, 323–331 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moullé, V. S. et al. The autonomic nervous system regulates pancreatic β-cell proliferation in adult male rats. Am. J. Physiol. Endocrinol. Metab. 317, E234–E243 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Pocal, A. et al. Hypothalamic KATP channels control hepatic glucose production. Nature 434, 1026–1031 (2005).

    Article 
    CAS 

    Google Scholar 

  • Chan, T. M. & Exton, J. H. Studies on α-adrenergic activation of hepatic glucose output. Studies on α-adrenergic inhibition of hepatic pyruvate kinase and activation of gluconeogenesis. J. Biol. Chem. 253, 6393–6400 (1978).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bruinstroop, E., Fliers, E. & Kalsbeek, A. Hypothalamic control of hepatic lipid metabolism via the autonomic nervous system. Best. Pract. Res. Clin. Endocrinol. Metab. 28, 673–684 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tavares, F. L. & Seelaender, M. C. L. Hepatic denervation impairs the assembly and secretion of VLDL-TAG. Cell Biochem. Funct. 26, 557–565 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Amir, M., Yu, M., He, P. & Srinivasan, S. Hepatic autonomic nervous system and neurotrophic factors regulate the pathogenesis and progression of non-alcoholic fatty liver disease. Front. Med. 7, 62 (2020).

    Article 

    Google Scholar 

  • Bartness, T. J., Liu, Y., Shrestha, Y. B. & Ryu, V. Neural innervation of white adipose tissue and the control of lipolysis. Front. Neuroendocrinol 35, 473–493 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao, Q., Jing, J., Cui, X., Shi, H. & Xue, B. Sympathetic nerve innervation is required for beigeing in white fat. Physiol. Rep. 7, e14031 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Desautels, M. & Dulos, R. A. Effects of neonatal sympathectomy on brown fat development and susceptibility to high fat diet induced obesity in mice. Can. J. Physiol. Pharmacol. 69, 1868–1874 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Virtanen, K. A. The rediscovery of BAT in adult humans using imaging. Best. Pract. Res. Clin. Endocrinol. Metab. 30, 471–477 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nascimento, A. I., Mar, F. M. & Sousa, M. M. The intriguing nature of dorsal root ganglion neurons: Linking structure with polarity and function. Prog. Neurobiol. 168, 86–103 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Beutler, L. R. et al. Dynamics of gut-brain communication underlying hunger. Neuron 96, 461–475 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, W. et al. A neural circuit for gut-induced reward. Cell 175, 665–678.e23 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grabauskas, G., Zhou, S. Y., Lu, Y., Song, I. & Owyang, C. Essential elements for glucosensing by gastric vagal afferents: immunocytochemistry and electrophysiology studies in the rat. Endocrinology 154, 296–307 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gautron, L. et al. Genetic tracing of Nav1.8-expressing vagal afferents in the mouse. J. Comp. Neurol. 519, 3085–3101 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Udit, S. et al. Nav1.8 neurons are involved in limiting acute phase responses to dietary fat. Mol. Metab. 6, 1081–1091 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Lartigue, G., Ronveaux, C. C. & Raybould, H. E. Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity. Mol. Metab. 3, 595–607 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Roman, C. W., Derkach, V. A. & Palmiter, R. D. Genetically and functionally defined NTS to PBN brain circuits mediating anorexia. Nat. Commun. 7, 11905 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • D’Agostino, G. et al. Appetite controlled by a cholecystokinin nucleus of the solitary tract to hypothalamus neurocircuit. Elife 5, e12225 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • D’Agostino, G. et al. Nucleus of the solitary tract serotonin 5-HT2C receptors modulate food intake. Cell Metab. 28, 619–630.e5 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Aklan, I. et al. NTS catecholamine neurons mediate hypoglycemic hunger via medial hypothalamic feeding pathways. Cell Metab. 31, 313–326.e5 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Panebianco, M., Rigby, A., Weston, J. & Marson, A. G. Vagus nerve stimulation for partial seizures. Cochrane Database Syst. Rev. 2015, CD002896 (2015).

    PubMed Central 

    Google Scholar 

  • Carreno, F. R. & Frazer, A. Vagal nerve stimulation for treatment-resistant depression. Neurotherapeutics 14, 716–727 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yao, G. et al. Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat. Commun. 9, 5349 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pelot, N. A. & Grill, W. M. Effects of vagal neuromodulation on feeding behavior. Brain Res 1693, 180–187 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gil, K., Bugajski, A. & Thor, P. Electrical vagus nerve stimulation decreases food consumption and weight gain in rats fed a high-fat diet. J. Physiol. Pharmacol. 62, 637–646 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Buijs, R. M., Chun, S. J., Niijima, A., Romijn, H. J. & Nagai, K. Parasympathetic and sympathetic control of the pancreas: A role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J. Comp. Neurol. 431, 405–423 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Browning, K. N. & Travagli, R. A. Plasticity of vagal brainstem circuits in the control of gastric function. Neurogastroenterol. Motil. 22, 1154–1163 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blake, C. B. & Smith, B. N. cAMP-dependent insulin modulation of synaptic inhibition in neurons of the dorsal motor nucleus of the vagus is altered in diabetic mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R711–R720 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Derbenev, A. V. & Smith, B. N. Dexamethasone rapidly increases GABA release in the dorsal motor nucleus of the vagus via retrograde messenger-mediated enhancement of TRPV1 activity. PLoS One 8, e70505 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boychuk, C. R. et al. A hindbrain inhibitory microcircuit mediates vagally-coordinated glucose regulation. Sci. Rep. 9, 2722 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Browning, K. N. & Travagli, R. A. Neuropeptide Y and peptide YY inhibit excitatory synaptic transmission in the rat dorsal motor nucleus of the vagus. J. Physiol. 549, 775–785 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ju, S. H., Cho, G. B. & Sohn, J. W. Understanding melanocortin-4 receptor control of neuronal circuits: Toward novel therapeutics for obesity syndrome. Pharmacol. Res. 129, 10–19 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Caverson, M. M., Ciriello, J. & Calaresu, F. R. Paraventricular nucleus of the hypothalamus: an electrophysiological investigation of neurons projecting directly to intermediolateral nucleus in the cat. Brain Res. 305, 380–383 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schiöth, H. B., Mutulis, F., Muceniece, R., Prusis, P. & Wikberg, J. E. S. Discovery of novel melanacortin4 receptor selective MSH analogues. Br. J. Pharm. 124, 75–82 (1998).

    Article 

    Google Scholar 

  • Gregor Sutcliffe, J. & De Lecea, L. The hypocretins: excitatory neuromodulatory peptides for multiple homeostatic systems, including sleep and feeding. J. Neurosci. Res. 62, 161–168 (2000).

    Article 

    Google Scholar 

  • Grabauskas, G. & Moises, H. C. Gastrointestinal-projecting neurones in the dorsal motor nucleus of the vagus exhibit direct and viscreotopically organized sensitivity to orexin. J. Physiol. 549, 37–56 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krowicki, Z. K. et al. Orexins in rat dorsal motor nucleus of the vagus potently stimulate gastric motor function. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G465–G472 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nakamura, K. et al. Identification of sympathetic premotor neurons in medullary raphe regions mediating fever and other thermoregulatory functions. J. Neurosci. 24, 5370–5380 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumagai, H. et al. Importance of rostral ventrolateral medulla neurons in determining efferent sympathetic nerve activity and blood pressure. Hypertens. Res. 35, 132–141 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yue, C.-J., Feng, L. & Huang, Q. melanocortinergic-sympathetic signaling: a transneuronal labeling study using pseudorabies virus. Int. J. Clin. Exp. Pathol. 7, 7962–7966 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Labbé, S. M. et al. Hypothalamic control of brown adipose tissue thermogenesis. Front. Syst. Neurosci. 9, 150 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Yoshida, K., Li, X., Cano, G., Lazarus, M. & Saper, C. B. Parallel preoptic pathways for thermoregulation. J. Neurosci. 29, 11954–11964 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jeong, J. H. et al. Cholinergic neurons in the dorsomedial hypothalamus regulate mouse brown adipose tissue metabolism. Mol. Metab. 4, 483–492 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Waterhouse, B. D., Devilbiss, D., Seiple, S. & Markowitz, R. Sensorimotor-related discharge of simultaneously recorded, single neurons in the dorsal raphe nucleus of the awake, unrestrained rat. Brain Res. 1000, 183–191 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dib, B., Rompré, P. P., Amir, S. & Shizgal, P. Thermogenesis in brown adipose tissue is activated by electrical stimulation of the rat dorsal raphe nucleus. Brain Res. 650, 149–152 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gross, P. M. & Weindl, A. Peering through the windows of the brain. J. Cereb. Blood Flow. Metab. 7, 663–672 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gross, P. M. Circumventricular organ capillaries. Prog. Brain Res. 91, 219–233 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tartaglia, L. A. et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 83, 1263–1271 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Friedman, J. M. & Halaas, J. L. Leptin and the regulation of body weight in mammals. Nature 395, 763–770 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chua, S. C. et al. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271, 994–996 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Spiegelman, B. M. & Flier, J. S. Obesity and the regulation of energy balance. Cell 104, 531–543 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gautron, L. & Elmquist, J. K. Sixteen years and counting: an update on leptin in energy balance. J. Clin. Invest. 121, 2087–2093 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scott, M. M. et al. Leptin targets in the mouse brain. J. Comp. Neurol. 514, 518–532 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patterson, C. M., Leshan, R. L., Jones, J. C. & Myers, M. G. Molecular mapping of mouse brain regions innervated by leptin receptor-expressing cells. Brain Res. 1378, 18–28 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Balthasar, N. et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 42, 983–991 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Van De Wall, E. et al. Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology 149, 1773–1785 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71, 142–154 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scott, M. M., Williams, K. W., Rossi, J., Lee, C. E. & Elmquist, J. K. Leptin receptor expression in hindbrain Glp-1 neurons regulates food intake and energy balance in mice. J. Clin. Invest. 121, 2413–2421 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zsombok, A. et al. Regulation of leptin receptor-expressing neurons in the brainstem by TRPV1. Physiol. Rep. 2, e12160 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Williams, K. W., Zsombok, A. & Smith, B. N. Rapid inhibition of neurons in the dorsal motor nucleus of the vagus by leptin. Endocrinology 148, 1868–1881 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cork, S. C. et al. Distribution and characterisation of glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol. Metab. 4, 718–731 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wan, S., Coleman, F. H. & Travagli, R. A. Glucagon-like peptide-1 excites pancreas-projecting preganglionic vagal motoneurons. Am. J. Physiol. Gastrointest. Liver Physiol. 292, 1474–1482 (2007).

    Article 
    CAS 

    Google Scholar 

  • Blackshaw, L. A. & Grundy, D. Effects of cholecystokinin (CCK-8) on two classes of gastroduodenal vagal afferent fibre. J. Auton. Nerv. Syst. 31, 191–201 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng, Z., Lewis, M. W. & Travagli, R. A. In vitro analysis of the effects of cholecystokinin on rat brain stem motoneurons. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G1066–G1073 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wan, S., Coleman, F. H. & Travagli, R. A. Cholecystokinin-8s excites identified rat pancreatic-projecting vagal motoneurons. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G484–G492 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mercer, L. D. & Beart, P. M. Histochemistry in rat brain and spinal cord with an antibody directed at the cholecystokinin(A) receptor. Neurosci. Lett. 225, 97–100 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Glatzle, J., Kreis, M. E., Kawano, K., Raybould, H. E. & Zittel, T. T. Postprandial neuronal activation in the nucleus of the solitary tract is partly mediated by CCK-A receptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R222–R229 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Babic, T. et al. Phenotype of neurons in the nucleus of the solitary tract that express CCK-induced activation of the ERK signaling pathway. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, 845–854 (2009).

    Article 
    CAS 

    Google Scholar 

  • Fan, W. et al. Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system. Nat. Neurosci. 7, 335–336 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Appleyard, S. M. et al. Proopiomelanocortin neurons in nucleus tractus solitarius are activated by visceral afferents: regulation by cholecystokinin and opioids. J. Neurosci. 25, 3578–3585 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    theholisticadmin
    • Website

    Related Posts

    Reiki: How Energy Healing Works

    July 16, 2024

    Access Consciousness: Phrenology fused with energy medicine

    July 8, 2024

    Newmarket Reiki practitioner brings healing energy to stressed pets

    June 23, 2024
    Leave A Reply Cancel Reply

    Products
    • Handcraft Blends Organic Castor Oil - 16 Fl Oz - 100% Pure and Natural
    • Bee's Wrap Reusable Beeswax Food Wraps
    • WeeSprout Double Zipper Reusable Food Pouch - 6 Pack - 5 fl oz
    Don't Miss

    8 Ayurvedic drinks and tonics to boost your immunity this monsoon season

    By theholisticadminJuly 30, 2024

    Cinnamon Tea Cinnamon has anti-inflammatory and antibacterial properties, making it perfect for maintaining overall health…

    An Ayurvedic Roadmap for Seasonal Self-Care

    July 30, 2024

    Can Zydus Wellness overcome skepticism about health drinks as it enters the Ayurvedic beverage space with Complan Immuno-Gro? – Brand Wagon News

    July 30, 2024

    Zydus Wellness launches Ayurvedic beverage Complan Immuno-Gro with campaign featuring actress Sneha

    July 30, 2024

    Subscribe to Updates

    Subscribe to our newsletter and never miss our latest news

    Subscribe my Newsletter for New Posts & tips Let's stay updated!

    About Us

    Welcome to TheHolisticHealing.com!

    At The Holistic Healing, we are passionate about providing comprehensive information and resources to support your journey towards holistic well-being. Our platform is dedicated to empowering individuals to take charge of their health and wellness through a holistic approach that integrates physical, mental, and spiritual aspects.

    Facebook X (Twitter) Pinterest YouTube WhatsApp
    Our Picks

    4 supplements you should absolutely avoid, found at HomeGoods

    July 30, 2024

    This anti-aging snail slime serum is just $14 (over 40% off), so grab it!

    July 30, 2024

    Book Review: The subtle power of emotional abuse

    July 30, 2024
    Most Popular

    Energy healed me — over the phone! Scientist explains how

    October 19, 2011

    Spirituality and Healing | Harvard Medical School

    January 14, 2015

    Healing through music – Harvard Health

    November 5, 2015
    • Home
    • About us
    • Advertise with Us
    • Contact us
    • DMCA Policy
    • Privacy Policy
    • Terms and Conditions
    © 2026 theholistichealing. Designed by theholistichealing.

    Type above and press Enter to search. Press Esc to cancel.

    Sign In or Register

    Welcome Back!

    Login to your account below.

    Prove your humanity


    Lost password?