Durkin, M. S. Increasing prevalence of developmental disabilities among children in the US: A sign of progress?. Pediatrics 144, 4 (2019).
Google Scholar
Gidziela, A. et al. A meta-analysis of genetic effects associated with neurodevelopmental disorders and co-occurring conditions. Nat. Hum. Behav. 7, 642–656 (2023).
Google Scholar
Parenti, I., Rabaneda, L. G., Schoen, H. & Novarino, G. Neurodevelopmental disorders: From genetics to functional pathways. Trends Neurosci. 43, 608–621 (2020).
Google Scholar
Data, C. statistics on autism spectrum disorder|CDC. Centers Dis. Control Prevent. 2020, 4781–4792 (2020).
Baxter, A. J. et al. The epidemiology and global burden of autism spectrum disorders. Psychol. Med. 45, 601–613 (2015).
Google Scholar
Zeidan, J. et al. Global prevalence of autism: A systematic review update. Autism Res. 15, 778–790 (2022).
Google Scholar
Bhat, S., Acharya, U. R., Adeli, H., Bairy, G. M. & Adeli, A. Autism: Cause factors, early diagnosis and therapies. Rev. Neurosci. 25, 841–850 (2014).
Google Scholar
Hirota, T. & King, B. H. Autism spectrum disorder: A review. JAMA 329, 157–168 (2023).
Google Scholar
Lord, C. et al. Autism spectrum disorder. Nat. Rev. Dis. Prim. 6, 1–23 (2020).
Fong, J., Lewis, J., Lam, M. & Kesavan, K. Developmental outcomes after opioid exposure in the fetus and neonate. NeoReviews 25, e325–e337 (2024).
Google Scholar
de Matos Reis, Á. E. et al. Maternal nutrition and its effects on fetal neurodevelopment. Nutrition 2024, 112483 (2024).
Google Scholar
Jembere, F. & Dewey, D. Prenatal Vitamin B12 and children’s brain development and cognitive, language and motor outcomes: A scoping review. Children 11, 558 (2024).
Google Scholar
Miclea, D., Peca, L., Cuzmici, Z. & Pop, I. V. Genetic testing in patients with global developmental delay/intellectual disabilities. A review. Clujul Med. 88, 288 (2015).
Google Scholar
Herman, G. E. et al. Genetic testing in autism: How much is enough?. Genet. Med. 9, 268–274 (2007).
Google Scholar
Miles, J. H. Autism spectrum disorders—a genetics review. Genet. Med. 13, 278–294 (2011).
Google Scholar
Sanders, S. J. et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 87, 1215–1233 (2015).
Google Scholar
Carlsson, T., Molander, F., Taylor, M. J., Jonsson, U. & Bölte, S. Early environmental risk factors for neurodevelopmental disorders—a systematic review of twin and sibling studies. Dev. Psychopathol. 33, 1448–1495 (2021).
Google Scholar
Volk, H. & Sheridan, M. A. Investigating the Impact of the Environment on Neurodevelopmental Disorder 1–2 (Springer, 2020).
Google Scholar
Modabbernia, A., Velthorst, E. & Reichenberg, A. Environmental risk factors for autism: An evidence-based review of systematic reviews and meta-analyses. Mol. Autism 8, 1–16 (2017).
Google Scholar
Eyles, D. W. Vitamin D: Brain and behavior. J. Bone Miner. Res. Plus 5, e10419 (2021).
Google Scholar
Aagaard, K. et al. High-dose vitamin D3 supplementation in pregnancy and risk of neurodevelopmental disorders in the children at age 10: A randomized clinical trial. Am. J. Clin. Nutr. 119, 362–370 (2024).
Google Scholar
Yasumitsu-Lovell, K. et al. Vitamin D deficiency associated with neurodevelopmental problems in 2-year-old Japanese boys. Acta Paediatr. 113, 119–126 (2024).
Google Scholar
Cannell, J. J. Vitamin D and autism, what’s new?. Rev. Endocrine Metabol. Disord. 18, 183–193 (2017).
Google Scholar
Guiducci, L. et al. Vitamin D status in children with autism spectrum disorders: Determinants and effects of the response to probiotic supplementation. Metabolites 12, 611 (2022).
Google Scholar
Wang, J. et al. Research progress on the role of vitamin D in autism spectrum disorder. Front. Behav. Neurosci. 16, 106 (2022).
Kočovská, E., Gaughran, F., Krivoy, A. & Meier, U.-C. Vitamin-D deficiency as a potential environmental risk factor in multiple sclerosis, schizophrenia, and autism. Front. Psychiatry 8, 239405 (2017).
Google Scholar
Cui, X. & Eyles, D. W. Vitamin D and the central nervous system: Causative and preventative mechanisms in brain disorders. Nutrients 14, 4353 (2022).
Google Scholar
Ye, X., Zhou, Q., Ren, P., Xiang, W. & Xiao, L. The synaptic and circuit functions of vitamin D in neurodevelopment disorders. Neuropsychiatr. Dis. Treatment 2023, 1515–1530 (2023).
Google Scholar
Arastoo, A. A. et al. Evaluation of serum 25-Hydroxy vitamin D levels in children with autism Spectrum disorder. Italian J. Pediatr. 44, 1–5 (2018).
Google Scholar
Dong, H., Wang, B., Li, H., Shan, L. & Jia, F. Correlation between serum 25-hydroxyvitamin D level and core symptoms of autism spectrum disorder in children. Chin. J. Pediatr. 55, 916–919 (2017).
Google Scholar
Guo, M. et al. Vitamin A and vitamin D deficiencies exacerbate symptoms in children with autism spectrum disorders. Nutr. Neurosci. 22, 637–647 (2019).
Google Scholar
Grant, W. B. & Cannell, J. J. Autism prevalence in the United States with respect to solar UV-B doses: An ecological study. Dermato-endocrinology 5, 159–164 (2013).
Google Scholar
Chen, J., Xin, K., Wei, J., Zhang, K. & Xiao, H. Lower maternal serum 25 (OH) D in first trimester associated with higher autism risk in Chinese offspring. J. Psychosom. Res. 89, 98–101 (2016).
Google Scholar
Vinkhuyzen, A. A. et al. Gestational vitamin D deficiency and autism-related traits: The Generation R Study. Mol. Psychiatry 23, 240–246 (2018).
Google Scholar
Garcia-Serna, A. M. & Morales, E. Neurodevelopmental effects of prenatal vitamin D in humans: Systematic review and meta-analysis. Mol. Psychiatry 25, 2468–2481 (2020).
Google Scholar
Stubbs, G., Henley, K. & Green, J. Autism: Will vitamin D supplementation during pregnancy and early childhood reduce the recurrence rate of autism in newborn siblings?. Med. Hypotheses 88, 74–78 (2016).
Google Scholar
Feng, J. et al. Clinical improvement following vitamin D3 supplementation in autism spectrum disorder. Nutr. Neurosci. 20, 284–290 (2017).
Google Scholar
Jia, F. et al. Core symptoms of autism improved after vitamin D supplementation. Pediatrics 135, e196–e198 (2015).
Google Scholar
Saad, K. et al. Retraction: Randomized Controlled Trial of Vitamin D Supplementation In Children with Autism Spectrum Disorder (Wiley Online Library, 2019).
Keute, M., Demirezen, M., Graf, A., Mueller, N. G. & Zaehle, T. No modulation of pupil size and event-related pupil response by transcutaneous auricular vagus nerve stimulation (taVNS). Sci. Rep. 9, 11452 (2019).
Google Scholar
Bikle, D. D. Vitamin D: Production, metabolism and mechanisms of action. Endotext 2021, 56 (2021).
Voltas, N. et al. Effect of vitamin D status during pregnancy on infant neurodevelopment: The ECLIPSES study. Nutrients 12, 3196 (2020).
Google Scholar
Ali, A., Cui, X. & Eyles, D. Developmental vitamin D deficiency and autism: Putative pathogenic mechanisms. J. Steroid Biochem. Mol. Biol. 175, 108–118 (2018).
Google Scholar
Patrick, R. P. & Ames, B. N. Vitamin D hormone regulates serotonin synthesis. Part 1: Relevance for autism. FASEB J. 28, 2398–2413 (2014).
Google Scholar
Pertile, R. A., Cui, X., Hammond, L. & Eyles, D. W. Vitamin D regulation of GDNF/Ret signaling in dopaminergic neurons. FASEB J. 32, 819–828 (2018).
Google Scholar
Chambers, E. S. & Hawrylowicz, C. M. The impact of vitamin D on regulatory T cells. Curr. Allergy Asthma Rep. 11, 29–36 (2011).
Google Scholar
Nakamura, K. et al. Brain serotonin and dopamine transporter bindings in adults with high-functioning autism. Arch. Gener. Psychiatry 67, 59–68 (2010).
Google Scholar
DeLuca, H. F. Vitamin D: Historical overview. Vitamins Hormones 100, 1–20 (2016).
Google Scholar
El-Sharkawy, A. & Malki, A. Vitamin D signaling in inflammation and cancer: Molecular mechanisms and therapeutic implications. Molecules 25, 3219 (2020).
Google Scholar
Litonjua, A. A. et al. The Vitamin D Antenatal Asthma Reduction Trial (VDAART): Rationale, design, and methods of a randomized, controlled trial of vitamin D supplementation in pregnancy for the primary prevention of asthma and allergies in children. Contempor. Clin. Trials 38, 37–50 (2014).
Google Scholar
Singh, A., Yeh, C. J. & Blanchard, S. B. Ages and stages questionnaire: A global screening scale. Boletín Médico Del Hospital Infantil de México (Engl. Ed.) 74, 5–12 (2017).
Squires, J., Bricker, D. D. & Twombly, E. Ages & Stages Questionnaires (Paul H. Brookes, 2009).
Hardy, S., Haisley, L., Manning, C. & Fein, D. Can screening with the Ages and Stages Questionnaire detect autism?. J. Develop. Behav. Pediatr. 36, 536 (2015).
Google Scholar
Kelly, R. S. et al. Metabolomics and communication skills development in children; evidence from the ages and stages questionnaire. Metabolites 9, 42 (2019).
Google Scholar
Kuijjer, M. L., Tung, M. G., Yuan, G., Quackenbush, J. & Glass, K. Estimating sample-specific regulatory networks. Iscience 14, 226–240 (2019).
Google Scholar
Wang, Z., Ding, R. & Wang, J. The association between vitamin D status and autism spectrum disorder (ASD): A systematic review and meta-analysis. Nutrients 13, 86 (2020).
Google Scholar
Wieder, C., Lai, R. P. & Ebbels, T. M. Single sample pathway analysis in metabolomics: Performance evaluation and application. BMC Bioinform. 23, 481 (2022).
Google Scholar
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587–D592 (2023).
Google Scholar
Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. 102, 15545–15550 (2005).
Google Scholar
Berger, M., Gray, J. A. & Roth, B. L. The expanded biology of serotonin. Annu. Rev. Med. 60, 355–366 (2009).
Google Scholar
Liu, H. et al. The metabolic factor kynurenic acid of kynurenine pathway predicts major depressive disorder. Front. Psychiatry 9, 552 (2018).
Google Scholar
Fazio, F. et al. Xanthurenic acid activates mGlu2/3 metabotropic glutamate receptors and is a potential trait marker for schizophrenia. Sci. Rep. 5, 17799 (2015).
Google Scholar
Murakami, Y., Imamura, Y., Saito, K., Sakai, D. & Motoyama, J. Altered kynurenine pathway metabolites in a mouse model of human attention-deficit hyperactivity/autism spectrum disorders: A potential new biological diagnostic marker. Sci. Rep. 9, 13182 (2019).
Google Scholar
Evangelisti, M. et al. Changes in serum levels of kynurenine metabolites in paediatric patients affected by ADHD. Eur. Child Adolesc. Psychiatry 26, 1433–1441 (2017).
Google Scholar
Roth, W., Zadeh, K., Vekariya, R., Ge, Y. & Mohamadzadeh, M. Tryptophan metabolism and gut-brain homeostasis. Int. J. Mol. Sci. 22, 2973 (2021).
Google Scholar
Tsuji, A. et al. The tryptophan and kynurenine pathway involved in the development of immune-related diseases. Int. J. Mol. Sci. 24, 5742 (2023).
Google Scholar
Boccuto, L. et al. Decreased tryptophan metabolism in patients with autism spectrum disorders. Mol. Autism 4, 1–10 (2013).
Google Scholar
Kałużna-Czaplińska, J., Jóźwik-Pruska, J., Chirumbolo, S. & Bjørklund, G. Tryptophan status in autism spectrum disorder and the influence of supplementation on its level. Metabol. Brain Dis. 32, 1585–1593 (2017).
Google Scholar
Schwartz, C. E. Aberrant tryptophan metabolism: The unifying biochemical basis for autism spectrum disorders?. Biomark. Med. 8, 313–315 (2014).
Google Scholar
Murru, E. et al. Conjugated linoleic acid and brain metabolism: A possible anti-neuroinflammatory role mediated by PPARα activation. Front. Pharmacol. 11, 587140 (2021).
Google Scholar
Usui, N. et al. VLDL-specific increases of fatty acids in autism spectrum disorder correlate with social interaction. EBioMedicine 58, 102917 (2020).
Google Scholar
El-Ansary, A. K., Ben-Bacha, A. G. & Al-Ayahdi, L. Y. Plasma fatty acids as diagnostic markers in autistic patients from Saudi Arabia. Lipids Health Dis. 10, 1–8 (2011).
Mitchell, E. A., Aman, M. G., Turbott, S. H. & Manku, M. Clinical characteristics and serum essential fatty acid levels in hyperactive children. Clin. Pediatr. 26, 406–411 (1987).
Google Scholar
Stevens, L. J. et al. Essential fatty acid metabolism in boys with attention-deficit hyperactivity disorder. Am. J. Clin. Nutr. 62, 761–768 (1995).
Google Scholar
Baker, S. M. A biochemical approach to the problem of dyslexia. J. Learn. Disabil. 18, 581–584 (1985).
Google Scholar
Rüthrich, H.-L., Hoffmann, P., Matthies, H. & Förster, W. Perinatal linoleate deprivation impairs learning and memory in adult rats. Behav. Neural Biol. 40, 205–212 (1984).
Google Scholar
Yin, K. & Agrawal, D. K. Vitamin D and inflammatory diseases. J. Inflamm. Res. 2014, 69–87 (2014).
Patrick, R. P. & Ames, B. N. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: Relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB J. 29, 2207–2222 (2015).
Google Scholar
Kanova, M. & Kohout, P. Serotonin—its synthesis and roles in the healthy and the critically ill. Int. J. Mol. Sci. 22, 4837 (2021).
Google Scholar
Clark-Taylor, T. & Clark-Taylor, B. E. Is autism a disorder of fatty acid metabolism? Possible dysfunction of mitochondrial β-oxidation by long chain acyl-CoA dehydrogenase. Med. Hypotheses 62, 970–975 (2004).
Google Scholar
Esposito, C. M., Buoli, M., Ciappolino, V., Agostoni, C. & Brambilla, P. The role of cholesterol and fatty acids in the etiology and diagnosis of autism spectrum disorders. Int. J. Mol. Sci. 22, 3550 (2021).
Google Scholar
Mulligan, M. L., Felton, S. K., Riek, A. E. & Bernal-Mizrachi, C. Implications of vitamin D deficiency in pregnancy and lactation. Am. J. Obstetr. Gynecol. 202, 429 (2010).
Google Scholar
Naeem, Z. Vitamin d deficiency-an ignored epidemic. Int. J. Health Sci. 4, 5 (2010).
Al-Beltagi, M. Autism medical comorbidities. World J. Clin. Pediatr. 10, 15 (2021).
Google Scholar
Xu, G. et al. Association of food allergy and other allergic conditions with autism spectrum disorder in children. JAMA Netw. Open 1, e180279–e180279 (2018).
Google Scholar
Ringe, J. D. & Kipshoven, C. Vitamin D-insufficiency: An estimate of the situation in Germany. Dermato-endocrinology 4, 72–80 (2012).
Google Scholar
Smeland, O. B., Meisingset, T. W., Borges, K. & Sonnewald, U. Chronic acetyl-L-carnitine alters brain energy metabolism and increases noradrenaline and serotonin content in healthy mice. Neurochem. Int. 61, 100–107 (2012).
Google Scholar
Ferreira, G. C. & McKenna, M. C. L-Carnitine and acetyl-L-carnitine roles and neuroprotection in developing brain. Neurochem. Res. 42, 1661–1675 (2017).
Google Scholar
Esmaiel, N. N. et al. The potential impact of COMT gene variants on dopamine regulation and phenotypic traits of ASD patients. Behav. Brain Res. 378, 112272 (2020).
Google Scholar
Comhair, S. A. et al. Metabolomic endotype of asthma. J. Immunol. 195, 643–650 (2015).
Google Scholar
Ghosh, N. et al. Metabolomic signatures of asthma-COPD overlap (ACO) are different from asthma and COPD. Metabolomics 15, 1–11 (2019).
Google Scholar
Muller, C. L., Anacker, A. M. & Veenstra-VanderWeele, J. The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience 321, 24–41 (2016).
Google Scholar
Motlagh, A. J., Davoodvandi, A. & Saeieh, S. E. Association between vitamin D level in mother’s serum and the level of vitamin D in the serum of pre-term infants. BMC Pediatr. 23, 97 (2023).
Google Scholar
Rabbani, S. et al. Correlation between maternal and neonatal blood Vitamin D level: Study from Pakistan. Maternal Child Nutr. 17, e13028 (2021).
Google Scholar
Mansur, J. L., Oliveri, B., Giacoia, E., Fusaro, D. & Costanzo, P. R. Vitamin D: Before, during and after pregnancy: Effect on neonates and children. Nutrients 14, 1900 (2022).
Google Scholar
Pirdehghan, A., Vakili, M., Dehghan, R. & Zare, F. High prevalence of vitamin D deficiency and adverse pregnancy outcomes in Yazd, a central province of Iran. J. Reprod. Infertil. 17, 34 (2016).
Google Scholar
Zhang, Q. et al. Severe vitamin D deficiency in the first trimester is associated with placental inflammation in high-risk singleton pregnancy. Clin. Nutr. 38, 1921–1926 (2019).
Google Scholar
Chernikova, M. A. et al. The brain-gut-microbiome system: Pathways and implications for autism spectrum disorder. Nutrients 13, 4497 (2021).
Google Scholar
Murakami, Y. et al. Maternal inflammation with elevated kynurenine metabolites is related to the risk of abnormal brain development and behavioral changes in autism spectrum disorder. Cells 12, 1087 (2023).
Google Scholar
Gevi, F., Zolla, L., Gabriele, S. & Persico, A. M. Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Mol. Autism 7, 1–11 (2016).
Google Scholar
Lim, C. K. et al. Altered kynurenine pathway metabolism in autism: Implication for immune-induced glutamatergic activity. Autism Res. 9, 621–631 (2016).
Google Scholar
Austin, D. W., Busija, L. & Brown, C. M. Observable essential fatty acid deficiency markers and autism spectrum disorder. Breastfeeding Rev. 22, 21–26 (2014).
Brown, C. M. & Austin, D. W. Autistic disorder and phospholipids: A review. Prostaglandins Leukotrienes Essential Fatty Acids 84, 25–30 (2011).
Google Scholar
Tamiji, J. & Crawford, D. A. The neurobiology of lipid metabolism in autism spectrum disorders. Neurosignals 18, 98–112 (2011).
Google Scholar
Lesch, K.-P. & Waider, J. Serotonin in the modulation of neural plasticity and networks: Implications for neurodevelopmental disorders. Neuron 76, 175–191 (2012).
Google Scholar
Ucuz, I. I., Dursun, O. B. & Aydin, N. The effects of vitamin D3 on brain development and autism. Bull. Clin. Psychopharmacol. 25, 302–311 (2015).
Google Scholar
Baron-Cohen, S. The extreme male brain theory of autism. Trends Cogn. Sci. 6, 248–254 (2002).
Google Scholar
Baron-Cohen, S., Knickmeyer, R. C. & Belmonte, M. K. Sex differences in the brain: Implications for explaining autism. Science 310, 819–823 (2005).
Google Scholar
Knickmeyer, R. C. & Baron-Cohen, S. Topical review: Fetal testosterone and sex differences in typical social development and in autism. J. Child Neurol. 21, 825–845 (2006).
Google Scholar
Olmos-Ortiz, A. et al. Evidence of sexual dimorphism in placental vitamin D metabolism: Testosterone inhibits calcitriol-dependent cathelicidin expression. J. Steroid Biochem. Mol. Biology 163, 173–182 (2016).
Google Scholar
Kirsch, A. C. et al. Association of comorbid mood and anxiety disorders with autism spectrum disorder. JAMA Pediatr. 174, 63–70 (2020).
Google Scholar
Angold, A., Erkanli, A., Silberg, J., Eaves, L. & Costello, E. J. Depression scale scores in 8–17-year-olds: Effects of age and gender. J. Child Psychol. Psychiatry 43, 1052–1063 (2002).
Google Scholar
Rai, D. et al. Association of autistic traits with depression from childhood to age 18 years. JAMA Psychiatry 75, 835–843 (2018).
Google Scholar
Bejerot, S. An autistic dimension: A proposed subtype of obsessive-compulsive disorder. Autism 11, 101–110 (2007).
Google Scholar
Meier, S. M. et al. Obsessive-compulsive disorder and autism spectrum disorders: Longitudinal and offspring risk. PloS one 10, e0141703 (2015).
Google Scholar
Cortesi, F., Giannotti, F., Ivanenko, A. & Johnson, K. Sleep in children with autistic spectrum disorder. Sleep Med. 11, 659–664 (2010).
Google Scholar
McElhanon, B. O., McCracken, C., Karpen, S. & Sharp, W. G. Gastrointestinal symptoms in autism spectrum disorder: A meta-analysis. Pediatrics 133, 872–883 (2014).
Google Scholar
Molloy, C. A. & Manning-Courtney, P. Prevalence of chronic gastrointestinal symptoms in children with autism and autistic spectrum disorders. Autism 7, 165–171 (2003).
Google Scholar
Lasheras, I., Real-López, M. & Santabárbara, J. Prevalence of gastrointestinal symptoms in autism spectrum disorder: A meta-analysis. Anal. Pediatr. (Engl. Ed.) 99, 102–110 (2023).
Google Scholar
Li, H. et al. Association of food hypersensitivity in children with the risk of autism spectrum disorder: A meta-analysis. Eur. J. Pediatr. 180, 999–1008 (2021).
Google Scholar
Gong, T. et al. Understanding the relationship between asthma and autism spectrum disorder: A population-based family and twin study. Psychol. Med. 53, 3096–3104 (2023).
Google Scholar
Zerbo, O. et al. Immune mediated conditions in autism spectrum disorders. Brain Behav. Immunity 46, 232–236 (2015).
Google Scholar
Nau, F. Jr. et al. Serotonin 5-HT2 receptor activation prevents allergic asthma in a mouse model. Am. J. Physiol. Lung Cell. Mol. Physiol. 308, L191–L198 (2015).
Google Scholar
Mendez-Enriquez, E. et al. Mast cell-derived serotonin enhances methacholine-induced airway hyperresponsiveness in house dust mite-induced experimental asthma. Allergy 76, 2057–2069 (2021).
Google Scholar
McCarty, P. & Frye, R. E. Early detection and diagnosis of autism spectrum disorder: Why is it so difficult? In Seminars in Pediatric Neurology, vol. 35 100831 (Elsevier, 2020).
McCune, Y. D., Richardson, M. M. & Powell, J. A. Psychosocial health issues in pediatric practices: Parents’ knowledge and concerns. Pediatrics 74, 183–190 (1984).
Google Scholar
Ertem, I. et al. Mothers’ knowledge of young child development in a developing country. Child Care Health Dev. 33, 728–737 (2007).
Google Scholar
Daley, T. C. From symptom recognition to diagnosis: Children with autism in urban India. Soc. Sci. Med. 58, 1323–1335 (2004).
Google Scholar
Veldhuizen, S., Bedard, C., Rodriguez, C. & Cairney, J. Psychological distress and parent reporting on child health: The case of developmental delay. Res. Dev. Disabil. 63, 11–17 (2017).
Google Scholar
Eyles, D., Brown, J., Mackay-Sim, A., McGrath, J. & Feron, F. Vitamin D3 and brain development. Neuroscience 118, 641–653 (2003).
Google Scholar
Cui, X., McGrath, J. J., Burne, T. H., Mackay-Sim, A. & Eyles, D. W. Maternal vitamin D depletion alters neurogenesis in the developing rat brain. Int. J. Dev. Neurosci. 25, 227–232 (2007).
Google Scholar
Ko, P., Burkert, R., McGrath, J. & Eyles, D. Maternal vitamin D3 deprivation and the regulation of apoptosis and cell cycle during rat brain development. Dev. Brain Res. 153, 61–68 (2004).
Google Scholar
Marini, F. et al. Effect of 1α, 25-dihydroxyvitamin D3 in embryonic hippocampal cells. Hippocampus 20, 696–705 (2010).
Google Scholar
Brown, J., Bianco, J. I., McGrath, J. J. & Eyles, D. W. 1, 25-dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci. Lett. 343, 139–143 (2003).
Google Scholar
De Abreu, D. A. F. et al. Developmental vitamin D deficiency alters learning in C57Bl/6J mice. Behav. Brain Res. 208, 603–608 (2010).
Google Scholar
Gao, K., Mu, C.-L., Farzi, A. & Zhu, W.-Y. Tryptophan metabolism: A link between the gut microbiota and brain. Adv. Nutr. 11, 709–723 (2020).
Google Scholar
Ogbu, D., Xia, E. & Sun, J. Gut instincts: Vitamin D/vitamin D receptor and microbiome in neurodevelopment disorders. Open Biol. 10, 200063 (2020).
Google Scholar
Tamang, M. K. et al. Developmental vitamin D-deficiency produces autism-relevant behaviours and gut-health associated alterations in a rat model. Transl. Psychiatry 13, 204 (2023).
Google Scholar
Qiu, S., Qiu, Y., Li, Y. & Cong, X. Genetics of autism spectrum disorder: An umbrella review of systematic reviews and meta-analyses. Transl. Psychiatry 12, 249 (2022).
Google Scholar
Yoon, S. H., Choi, J., Lee, W. J. & Do, J. T. Genetic and epigenetic etiology underlying autism spectrum disorder. J. Clin. Med. 9, 966 (2020).
Google Scholar
Rylaarsdam, L. & Guemez-Gamboa, A. Genetic causes and modifiers of autism spectrum disorder. Front. Cell. Neurosci. 13, 385 (2019).
Google Scholar
Schmidt, R. J. et al. Selected vitamin D metabolic gene variants and risk for autism spectrum disorder in the CHARGE Study. Early Hum. Dev. 91, 483–489 (2015).
Google Scholar
De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014).
Google Scholar
Wang, J. et al. Research progress on the role of vitamin D in autism spectrum disorder. Front. Behav. Neurosci. 16, 859151 (2022).
Google Scholar
Cannell, J. J. & Grant, W. B. What is the role of vitamin D in autism?. Dermato-endocrinology 5, 199–204 (2013).
Google Scholar
Batushansky, A., Toubiana, D. & Fait, A. Correlation-based network generation, visualization, and analysis as a powerful tool in biological studies: A case study in cancer cell metabolism. BioMed Res. Int. 2016, 9 (2016).
Google Scholar
Perez-De-Souza, L., Alseekh, S., Brotman, Y. & Fernie, A. R. Network-based strategies in metabolomics data analysis and interpretation: From molecular networking to biological interpretation. Expert Rev. Proteom. 17, 243–255 (2020).
Google Scholar
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47–e47 (2015).
Google Scholar
Fang, Z., Liu, X. & Peltz, G. GSEApy: A comprehensive package for performing gene set enrichment analysis in Python. Bioinformatics 39, btac757 (2023).
Google Scholar
Cock, P. J. et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).
Google Scholar