Van Dam, N. T. et al. Mind the hype: A critical evaluation and prescriptive agenda for research on mindfulness and meditation. Perspect. Psychol. Sci. 13, 36–61. https://doi.org/10.1177/1745691617709589 (2018).
Google Scholar
Davidson, R. J. Mindfulness and more: Toward a science of human flourishing. Psychosom. Med. 83, 665–668. https://doi.org/10.1097/PSY.0000000000000960 (2021).
Google Scholar
Lawrence, D. W., Sharma, B., Griffiths, R. R. & Carhart-Harris, R. Trends in the top-cited articles on classic psychedelics. J. Psychoactive Drugs 53, 283–298. https://doi.org/10.1080/02791072.2021.1874573 (2021).
Google Scholar
Hadar, A. et al. The psychedelic renaissance in clinical research: A bibliometric analysis of three decades of human studies with psychedelics. J. Psychoactive Drugshttps://doi.org/10.1080/02791072.2021.2022254 (2022).
Google Scholar
Millière, R., Carhart-Harris, R. L., Roseman, L., Trautwein, F.-M. & Berkovich-Ohana, A. Psychedelics, meditation, and self-consciousness. Front. Psychol. 9, 1475. https://doi.org/10.3389/fpsyg.2018.01475 (2018).
Google Scholar
Carhart-Harris, R. L. The entropic brain – revisited. Neuropharmacology 142, 167–178, https://doi.org/10.1016/j.neuropharm.2018.03.010 (2018). Psychedelics: New Doors, Altered Perceptions.
Smigielski, L. et al. Characterization and prediction of acute and sustained response to psychedelic psilocybin in a mindfulness group retreat. Sci. Rep. 9, 14914. https://doi.org/10.1038/s41598-019-50612-3 (2019).
Google Scholar
Saggar, M. et al. Towards a new approach to reveal dynamical organization of the brain using topological data analysis. Nat. Commun. 9, 1–14 (2018).
Google Scholar
Saggar, M., Shine, J. M., Liegeois, R., Dosenbach, N. U. & Fair, D. Precision dynamical mapping using topological data analysis reveals a unique hub-like transition state at rest. Nat. Commun. 13, 4791 (2022).
Google Scholar
Geniesse, C., Sporns, O., Petri, G. & Saggar, M. Generating dynamical neuroimaging spatiotemporal representations (dyneusr) using topological data analysis. Netw. Neurosci. 3, 763–778 (2018).
Google Scholar
Geniesse, C., Chowdhury, S. & Saggar, M. NeuMapper: A scalable computational framework for multiscale exploration of the brain’s dynamical organization. Network Neurosci., https://doi.org/10.1162/netn_a_00229 (2022). https://direct.mit.edu/netn/article-pdf/doi/10.1162/netn_a_00229/1982659/netn_a_00229.pdf.
Dahl, C. J. & Davidson, R. J. Mindfulness and the contemplative life: Pathways to connection, insight, and purpose. Curr. Opin. Psychol. 28, 60–64. https://doi.org/10.1016/j.copsyc.2018.11.007 (2019).
Google Scholar
Tang, Y.-Y., Hölzel, B. K. & Posner, M. I. The neuroscience of mindfulness meditation. Nat. Rev. Neurosci. 16, 213–225. https://doi.org/10.1038/nrn3916 (2015).
Google Scholar
Xiao, Q., Yue, C., He, W. & Yu, J.-Y. The mindful self: A mindfulness-enlightened self-view. Front. Psychol. 1752 (2017).
Dunne, J. Toward an understanding of non-dual mindfulness. Contemp. Buddhism 12, 71–88 (2011).
Google Scholar
Meling, D. Knowing the knowing. non-dual meditative practice from an enactive perspective. Front. Psychol. 13, 778817 (2022).
Hofmann, S. G., Grossman, P. & Hinton, D. E. Loving-kindness and compassion meditation: Potential for psychological interventions. Clin. Psychol. Rev. 31, 1126–1132 (2011).
Google Scholar
Dahl, C. J., Lutz, A. & Davidson, R. J. Reconstructing and deconstructing the self: Cognitive mechanisms in meditation practice. Trends Cogn. Sci. 19, 515–523. https://doi.org/10.1016/j.tics.2015.07.001 (2015).
Google Scholar
Dahl, C. J., Wilson-Mendenhall, C. D. & Davidson, R. J. The plasticity of well-being: A training-based framework for the cultivation of human flourishing. Proc. Natl. Acad. Sci. 117, 32197–32206. https://doi.org/10.1073/pnas.2014859117 (2020).
Google Scholar
Lutz, A., Slagter, H. A., Dunne, J. D. & Davidson, R. J. Attention regulation and monitoring in meditation. Trends Cogn. Sci. 12, 163–169. https://doi.org/10.1016/j.tics.2008.01.005 (2008).
Google Scholar
Carhart-Harris, R. L. et al. Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proc. Natl. Acad. Sci. 113, 4853–4858, https://doi.org/10.1073/pnas.1518377113 (2016). https://www.pnas.org/doi/pdf/10.1073/pnas.1518377113.
Carhart-Harris, R. L. et al. Psilocybin with psychological support for treatment-resistant depression: An open-label feasibility study. Lancet Psychiat. 3, 619–627. https://doi.org/10.1016/S2215-0366(16)30065-7 (2016).
Google Scholar
Griffiths, R. R. et al. Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: A randomized double-blind trial. J. Psychopharmacol. (Oxford, England) 30, 1181–1197. https://doi.org/10.1177/0269881116675513 (2016).
Google Scholar
Letheby, C. Naturalizing psychedelic spirituality. Zygon®52, 623–642, https://doi.org/10.1111/zygo.12353 (2017). https://onlinelibrary.wiley.com/doi/pdf/10.1111/zygo.12353.
Tagliazucchi, E. et al. Large-scale signatures of unconsciousness are consistent with a departure from critical dynamics. J. R. Soc. Interface 13, 20151027 (2016).
Google Scholar
Rose, S., Zell, E. & Strickhouser, J. E. The effect of meditation on health: A metasynthesis of randomized controlled trials. Mindfulness 11, 507–516. https://doi.org/10.1007/s12671-019-01277-6 (2020).
Google Scholar
Goldberg, S. B. et al. Mindfulness-based interventions for psychiatric disorders: A systematic review and meta-analysis. Clin. Psychol. Rev. 59, 52–60. https://doi.org/10.1016/j.cpr.2017.10.011 (2018).
Google Scholar
Andersen, K. A. A., Carhart-Harris, R., Nutt, D. J. & Erritzoe, D. Therapeutic effects of classic serotonergic psychedelics: A systematic review of modern-era clinical studies. Acta Psychiatr. Scand. 143, 101–118. https://doi.org/10.1111/acps.13249 (2021).
Google Scholar
Luoma, J. B., Chwyl, C., Bathje, G. J., Davis, A. K. & Lancelotta, R. A meta-analysis of placebo-controlled trials of psychedelic-assisted therapy. J. Psychoactive Drugs 52, 289–299. https://doi.org/10.1080/02791072.2020.1769878 (2020).
Google Scholar
Davis, A. K. et al. Effects of psilocybin-assisted therapy on major depressive disorder: A randomized clinical trial. JAMA Psychiat. 78, 481. https://doi.org/10.1001/jamapsychiatry.2020.3285 (2021).
Google Scholar
von Rotz, R. et al. Single-dose psilocybin-assisted therapy in major depressive disorder: A placebo-controlled, double-blind, randomised clinical trial. EClinicalMedicine 56 (2023).
Goodwin, G. M. et al. Single-dose psilocybin for a treatment-resistant episode of major depression. N. Engl. J. Med. 387, 1637–1648 (2022).
Google Scholar
Gasser, P. et al. Safety and efficacy of lysergic acid diethylamide-assisted psychotherapy for anxiety associated with life-threatening diseases. J. Nerv. Ment. Dis. 202, 513 (2014).
Google Scholar
Ross, S. et al. Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. J. Psychopharmacol. (Oxford, England) 30, 1165–1180. https://doi.org/10.1177/0269881116675512 (2016).
Google Scholar
Johnson, M. W., Garcia-Romeu, A. & Griffiths, R. R. Long-term follow-up of psilocybin-facilitated smoking cessation. Am. J. Drug Alcohol Abuse 43, 55–60 (2017).
Google Scholar
Bogenschutz, M. P. et al. Percentage of heavy drinking days following psilocybin-assisted psychotherapy vs placebo in the treatment of adult patients with alcohol use disorder: a randomized clinical trial. JAMA Psychiat. 79, 953–962 (2022).
Google Scholar
Goldberg, S. B., Lam, S. U., Britton, W. B. & Davidson, R. J. Prevalence of meditation-related adverse effects in a population-based sample in the united states. Psychother. Res. 32, 291–305 (2022).
Google Scholar
Lambert, D., van den Berg, N. & Mendrek, A. Adverse effects of meditation: A review of observational, experimental and case studies. Curr. Psychol. 1–14 (2021).
Britton, W. B., Lindahl, J. R., Cooper, D. J., Canby, N. K. & Palitsky, R. Defining and measuring meditation-related adverse effects in mindfulness-based programs. Clin. Psychol. Sci. 9, 1185–1204 (2021).
Google Scholar
Hirshberg, M. J., Goldberg, S. B., Rosenkranz, M. & Davidson, R. J. Prevalence of harm in mindfulness-based stress reduction. Psychol. Med. 52, 1080–1088 (2022).
Google Scholar
Schlag, A. K., Aday, J., Salam, I., Neill, J. C. & Nutt, D. J. Adverse effects of psychedelics: From anecdotes and misinformation to systematic science. J. Psychopharmacol. 36, 258–272 (2022).
Google Scholar
Yaden, D. B., Potash, J. B. & Griffiths, R. R. Preparing for the bursting of the psychedelic hype bubble. JAMA Psychiat. 79, 943–944 (2022).
Google Scholar
Millière, R., Carhart-Harris, R. L., Roseman, L., Trautwein, F.-M. & Berkovich-Ohana, A. Psychedelics, meditation, and self-consciousness. Front. Psychol. 9, 1475. https://doi.org/10.3389/fpsyg.2018.01475 (2018).
Google Scholar
Heuschkel, K. & Kuypers, K. P. Depression, mindfulness, and psilocybin: possible complementary effects of mindfulness meditation and psilocybin in the treatment of depression. A review. Front. Psychiat. 11, 224. https://doi.org/10.3389/fpsyt.2020.00224 (2020).
Google Scholar
Payne, J. E., Chambers, R. & Liknaitzky, P. Combining psychedelic and mindfulness interventions: Synergies to inform clinical practice. ACS Pharmacol. Transl. Sci. 4, 416–423. https://doi.org/10.1021/acsptsci.1c00034 (2021).
Google Scholar
Scheidegger, M. Comparative Phenomenology and Neurobiology of Meditative and Psychedelic States of Consciousness. Handbook of Medical Hallucinogens 395 (2021). Publisher: Guilford Publications.
Letheby, C. Psychedelics and meditation: A neurophilosophical perspective. In The Routledge Handbook of the Philosophy of Meditation (Routledge, 2022).
Fox, K. C. et al. Functional neuroanatomy of meditation: A review and meta-analysis of 78 functional neuroimaging investigations. Neurosci. Biobehav. Rev. 65, 208–228. https://doi.org/10.1016/j.neubiorev.2016.03.021 (2016).
Google Scholar
Josipovic, Z. Neural correlates of nondual awareness in meditation: Neural correlates and nondual awareness. Ann. N. Y. Acad. Sci. 1307, 9–18. https://doi.org/10.1111/nyas.12261 (2014).
Google Scholar
Barrett, F. S. & Griffiths, R. R. Classic hallucinogens and mystical experiences: Phenomenology and neural correlates. Behav. Neurobiol. Psychedelic Drugs 393–430 (2017).
Tagliazucchi, E., Carhart-Harris, R. L., Leech, R., Nutt, D. & Chialvo, D. R. Enhanced repertoire of brain dynamical states during the psychedelic experience. Hum. Brain Mapp. 35(11), 5442–56 (2014).
Google Scholar
Lebedev, A. V. et al. Lsd-induced entropic brain activity predicts subsequent personality change. Hum. Brain Mapp. 37, 3203–3213 (2016).
Google Scholar
Atasoy, S. et al. Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-organization under lsd. Sci. Rep. 7, 1–18 (2017).
Google Scholar
Herzog, R. et al. A whole-brain model of the neural entropy increase elicited by psychedelic drugs. Sci. Rep. 13, 6244 (2023).
Google Scholar
McCulloch, D. E.-W. et al. Navigating the chaos of psychedelic neuroimaging: A multi-metric evaluation of acute psilocybin effects on brain entropy. medRxiv 2023–07 (2023).
Rankaduwa, S. & Owen, A. M. Psychedelics, entropic brain theory, and the taxonomy of conscious states: A summary of debates and perspectives. Neurosci. Consciousness 2023, niad001 (2023).
Kakumanu, R. J. et al. Dissociating meditation proficiency and experience dependent eeg changes during traditional vipassana meditation practice. Biol. Psychol. 135, 65–75 (2018).
Google Scholar
Vyšata, O. et al. Non-linear eeg measures in meditation. J. Biomed. Sci. Eng. 7, 731 (2014).
Google Scholar
Vivot, R. M., Pallavicini, C., Zamberlan, F., Vigo, D. & Tagliazucchi, E. Meditation increases the entropy of brain oscillatory activity. Neuroscience 431, 40–51 (2020).
Google Scholar
Keshmiri, S. Entropy and the brain: An overview. Entropy 22, 917 (2020).
Google Scholar
Simonsson, O. & Goldberg, S. B. Linkages between psychedelics and meditation in a population-based sample in the United States. J. Psychoactive Drugshttps://doi.org/10.1080/02791072.2021.2022816 (2022).
Google Scholar
Simonsson, C. et al. Classic psychedelic use and current meditation practice. Mindfulness 14, 763–768 (2023).
Google Scholar
Griffiths, R. R. et al. Psilocybin-occasioned mystical-type experience in combination with meditation and other spiritual practices produces enduring positive changes in psychological functioning and in trait measures of prosocial attitudes and behaviors. J. Psychopharmacol. 32, 49–69. https://doi.org/10.1177/0269881117731279 (2018).
Google Scholar
Carlsson, G. Topology and data. Bull. Am. Math. Soc. 46, 255–308 (2009).
Google Scholar
Chazal, F. & Michel, B. An introduction to topological data analysis: Fundamental and practical aspects for data scientists. Front. Artif. Intell. 4 (2021).
Expert, P., Lord, L.-D., Kringelbach, M. L. & Petri, G. Editorial: Topological neuroscience. Network neuroscience (Cambridge, Mass.) 3, 653–655 (2019).
Sizemore, A. E., Phillips-Cremins, J. E., Ghrist, R. & Bassett, D. S. The importance of the whole: Topological data analysis for the network neuroscientist. Network Neurosci. 3, 656–673 (2019).
Google Scholar
Salch, A. et al. From mathematics to medicine: A practical primer on topological data analysis (tda) and the development of related analytic tools for the functional discovery of latent structure in fmri data. PLoS ONE 16, e0255859 (2021).
Google Scholar
Petri, G. M. et al. Homological scaffolds of brain functional networks. J. R. Soc. Interface 11, 20140873 (2014).
Google Scholar
Varley, T. F., Denny, V., Sporns, O. & Patania, A. Topological analysis of differential effects of ketamine and propofol anaesthesia on brain dynamics. R. Soc. Open Sci. 8, 201971 (2021).
Google Scholar
Singh, G., Memoli, F. & Carlsson, G. Topological methods for the analysis of high dimensional data sets and 3D object recognition. In Botsch, M., Pajarola, R., Chen, B. & Zwicker, M. (eds.) Eurographics Symposium on Point-Based Graphics, https://doi.org/10.2312/SPBG/SPBG07/091-100 (The Eurographics Association, 2007).
Smigielski, L., Scheidegger, M., Kometer, M. & Vollenweider, F. X. Psilocybin-assisted mindfulness training modulates self-consciousness and brain default mode network connectivity with lasting effects. Neuroimage 196, 207–215. https://doi.org/10.1016/j.neuroimage.2019.04.009 (2019).
Google Scholar
Dittrich, A. The standardized psychometric assessment of altered states of consciousness (ascs) in humans. Pharmacopsychiatry 31, 80–84 (1998).
Google Scholar
Peyré, G. et al. Computational optimal transport: With applications to data science. Found. Trends Mach. Learn. 11, 355–607 (2019).
Google Scholar
Roseman, L., Nutt, D. J. & Carhart-Harris, R. L. Quality of acute psychedelic experience predicts therapeutic efficacy of psilocybin for treatment-resistant depression. Front. Pharmacol. 8, 974 (2018).
Google Scholar
Lutz, A., Jha, A. P., Dunne, J. D. & Saron, C. D. Investigating the phenomenological matrix of mindfulness-related practices from a neurocognitive perspective. Am. Psychol. 70, 632 (2015).
Google Scholar
Vishnubhotla, R. V. et al. Advanced meditation alters resting-state brain network connectivity correlating with improved mindfulness. Front. Psychol. 12 (2021).
Zhang, Z. et al. Longitudinal effects of meditation on brain resting-state functional connectivity. Sci. Rep. 11, 1–14 (2021).
Zhang, M., Chowdhury, S. & Saggar, M. Temporal mapper: Transition networks in simulated and real neural dynamics. Netw. Neurosci. 7, 431–460 (2023).
Google Scholar
McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction (2018). arXiv:1802.03426.
Abdoun, O., Zorn, J., Poletti, S., Fucci, E. & Lutz, A. Training novice practitioners to reliably report their meditation experience using shared phenomenological dimensions. Conscious. Cogn. 68, 57–72 (2019).
Google Scholar
Josipovic, Z., Dinstein, I., Weber, J. & Heeger, D. J. Influence of meditation on anti-correlated networks in the brain. Front. Hum. Neurosci. 5, 183 (2012).
Google Scholar
Hasenkamp, W. & Barsalou, L. W. Effects of meditation experience on functional connectivity of distributed brain networks. Front. Hum. Neurosci. 6, 38 (2012).
Google Scholar
Malinowski, P. Neural mechanisms of attentional control in mindfulness meditation. Front. Neurosci. 7, 8 (2013).
Google Scholar
Berkovich-Ohana, A. et al. The hitchhiker’s guide to neurophenomenology–the case of studying self boundaries with meditators. Front. Psychol. 1680 (2020).
Varela, F. J. Neurophenomenology: A methodological remedy for the hard problem. J. Conscious. Stud. 3, 330–349 (1996).
Meling, D. & Scheidegger, M. Not in the drug, not in the brain: Causality in psychedelic experiences from an enactive perspective. Front. Psychol. 14, 1100058 (2023).
Google Scholar
Timmermann, C. et al. A neurophenomenological approach to non-ordinary states of consciousness: hypnosis, meditation, and psychedelics. Trends Cognit. Sci. (2023).
Grabner, G. et al. Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. In International Conference on Medical Image Computing and Computer-Assisted Intervention, 58–66 (Springer, 2006).
van Veen, H., Saul, N., Eargle, D., & Mangham, S. Kepler mapper: A flexible python implementation of the mapper algorithm. J. Open Source Softw. 4, 1315 (2019). https://doi.org/10.21105/joss.01315
Rubner, Y., Tomasi, C. & Guibas, L. J. The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vision 40, 99–121 (2000).
Google Scholar
Ester, M. et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In kdd 96, 226–231 (1996).
Floyd, R. W. Algorithm 97: Shortest path. Commun. ACM 5, 345 (1962).
Google Scholar
Studerus, E., Gamma, A. & Vollenweider, F. X. Psychometric evaluation of the altered states of consciousness rating scale (oav). PLoS ONE 5, e12412 (2010).
Google Scholar
Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Annals of statistics 1165–1188 (2001).
Galwey, N. W. A new measure of the effective number of tests, a practical tool for comparing families of non-independent significance tests. Genet. Epidemiol. 33, 559–568 (2009).
Google Scholar