Close Menu
  • Home
  • Wellness
    • Women’s Health
    • Anti-Aging
    • Mental Health
  • Alternate Healing
    • Energy Healing
    • Aromatherapy
    • Acupuncture
    • Hypnotherapy
    • Ayurveda
    • Herbal Remedies
    • Flower Essences
    • Naturopathy
  • Spirituality
    • Meditation
    • Pilates & Yoga
  • Nutrition
    • Vitamins & Supplements
    • Recipes
  • Shop

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

What's Hot

4 supplements you should absolutely avoid, found at HomeGoods

July 30, 2024

This anti-aging snail slime serum is just $14 (over 40% off), so grab it!

July 30, 2024

Book Review: The subtle power of emotional abuse

July 30, 2024
Facebook X (Twitter) Instagram
  • Home
  • About us
  • Advertise with Us
  • Contact us
  • DMCA Policy
  • Privacy Policy
  • Terms and Conditions
Login
0 Shopping Cart
The Holistic Healing
  • Home
  • Wellness
    • Women’s Health
    • Anti-Aging
    • Mental Health
  • Alternate Healing
    • Energy Healing
    • Aromatherapy
    • Acupuncture
    • Hypnotherapy
    • Ayurveda
    • Herbal Remedies
    • Flower Essences
    • Naturopathy
  • Spirituality
    • Meditation
    • Pilates & Yoga
  • Nutrition
    • Vitamins & Supplements
    • Recipes
  • Shop
The Holistic Healing
Home » Portable and wearable self-powered systems based on emerging energy harvesting technology
Energy Healing

Portable and wearable self-powered systems based on emerging energy harvesting technology

theholisticadminBy theholisticadminMarch 17, 2021No Comments13 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr Email Reddit
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


  • An, B. et al. Smart sensor systems for wearable electronic devices. Polymers 9, 303 (2017).

    Article 

    Google Scholar 

  • Stoppa, M. & Chiolerio, A. Wearable electronics and smart textiles: a critical review. Sensors 14, 11957–11992 (2014).

    Article 

    Google Scholar 

  • Rawassizadeh, R., Price, B. A. & Petre, M. Wearables: has the age of smartwatches finally arrived? Commun. ACM 58, 45–47 (2014).

    Article 

    Google Scholar 

  • Rauschnabel, P. A. & Ro, Y. K. Augmented reality smart glasses: an investigation of technology acceptance drivers. Int. J. Technol. Mark. 11, 123–148 (2016).

    Article 

    Google Scholar 

  • Liu, Y., He, K., Chen, G., Leow, W. R. & Chen, X. Nature-inspired structural materials for flexible electronic devices. Chem. Rev. 117, 12893–12941 (2017).

    Article 

    Google Scholar 

  • Jagadish, H. V. et al. Big data and its technical challenges. Commun. ACM 57, 86–94 (2014).

    Article 

    Google Scholar 

  • Chen, M. et al. Wearable 2.0: enabling human-cloud integration in next generation healthcare systems. IEEE Commun. Mag. 55, 54–61 (2017).

    Article 

    Google Scholar 

  • Shi, Q. et al. Progress in wearable electronics/photonics—moving toward the era of artificial intelligence and internet of things. InfoMat 2, 1131–1162 (2020).

    Article 

    Google Scholar 

  • Majumder, S., Mondal, T. & Deen, M. J. Wearable sensors for remote health monitoring. Sensors 17, 130 (2017).

    Article 

    Google Scholar 

  • Liu, Y., Pharr, M. & Salvatore, G. A. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11, 9614–9635 (2017).

    Article 

    Google Scholar 

  • Dong, B. et al. Wearable triboelectric–human–machine interface (THMI) using robust nanophotonic readout. ACS Nano 14, 8915–8930 (2020).

    Article 

    Google Scholar 

  • Sim, K. et al. Metal oxide semiconductor nanomembrane–based soft unnoticeable multifunctional electronics for wearable human-machine interfaces. Sci. Adv. 5, eaav9653 (2019).

    Article 

    Google Scholar 

  • Zaia, E. W., Gordon, M. P., Yuan, P. & Urban, J. J. Progress and perspective: soft thermoelectric materials for wearable and Internet‐of‐Things applications. Adv. Electron. Mater. 5, 1800823 (2019).

    Article 

    Google Scholar 

  • Xiao, N., Yu, W. & Han, X. Wearable heart rate monitoring intelligent sports bracelet based on Internet of Things. Measurement 164, 108102 (2020).

    Article 

    Google Scholar 

  • Xia, K. et al. Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion. Nano Energy 50, 571–580 (2018).

    Article 

    Google Scholar 

  • Zou, Y., Raveendran, V. & Chen, J. Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy 77, 105303 (2020).

    Article 

    Google Scholar 

  • Mondal, S., Paul, T., Maiti, S., Das, B. K. & Chattopadhyay, K. K. Human motion interactive mechanical energy harvester based on all inorganic perovskite-PVDF. Nano Energy 74, 104870 (2020).

    Article 

    Google Scholar 

  • Anwar, S. et al. Piezoelectric nylon-11 fibers for electronic textiles, energy harvesting and sensing. Adv. Funct. Mater. 31, 2004326 (2021).

    Article 

    Google Scholar 

  • Maharjan, P. et al. High-performance cycloid inspired wearable electromagnetic energy harvester for scavenging human motion energy. Appl. Energy 256, 113987 (2019).

    Article 

    Google Scholar 

  • Digregorio, G., Pierre, H., Laurent, P. & Redouté, J. M. Modeling and experimental characterization of an electromagnetic energy harvester for wearable and biomedical applications. IEEE Access 8, 175436–175447 (2020).

    Article 

    Google Scholar 

  • Bandodkar, A. et al. Soft, stretchable, high power density electronic skin-based biofuel cells for scavenging energy from human sweat. Energy Environ. Sci. 10, 1581–1589 (2017).

    Article 

    Google Scholar 

  • Huang, X. et al. Wearable biofuel cells based on the classification of enzyme for high power outputs and lifetimes. Biosens. Bioelectron. 124, 40–52 (2019).

    Article 

    Google Scholar 

  • Zhao, X. et al. Fabrication of transparent paper-based flexible thermoelectric generator for wearable energy harvester using modified distributor printing technology. ACS Appl. Mater. Interfaces 11, 10301–10309 (2019).

    Article 

    Google Scholar 

  • Nozariasbmarz, A. et al. Review of wearable thermoelectric energy harvesting: from body temperature to electronic systems. Appl. Energy 258, 114069 (2020).

    Article 

    Google Scholar 

  • Hashemi, S. A., Ramakrishna, S. & Aberle, A. G. Recent progress in flexible-wearable solar cells for self-powered electronic devices. Energy Environ. Sci. 13, 685–743 (2020).

    Article 

    Google Scholar 

  • Satharasinghe, A., Hughes‐Riley, T. & Dias, T. An investigation of a wash‐durable solar energy harvesting textile. Prog. Photovoltaics Res. Appl. 28, 578–592 (2020) .

    Article 

    Google Scholar 

  • Ryu, H., Yoon, H. J. & Kim, S. W. Hybrid energy harvesters: toward sustainable energy harvesting. Adv. Mater. 31, 1802898 (2019).

    Article 

    Google Scholar 

  • Zhang, T., Yang, T., Zhang, M., Bowen, C. R. & Yang, Y. Recent progress in hybridized nanogenerators for energy scavenging. iScience 23, 101689 (2020).

    Article 

    Google Scholar 

  • Wang, Y. et al. Hierarchically patterned self-powered sensors for multifunctional tactile sensing. Sci. Adv. 6, eabb9083 (2020).

    Article 

    Google Scholar 

  • Chen, X., Ren, Z., Guo, H., Cheng, X. & Zhang, H. Self-powered flexible and transparent smart patch for temperature sensing. Appl. Phys. Lett. 116, 043902 (2020).

    Article 

    Google Scholar 

  • Chen, H. et al. Superior self‐powered room‐temperature chemical sensing with light‐activated inorganic halides perovskites. Small 14, 1702571 (2018).

    Article 

    Google Scholar 

  • Kim, Y. et al. 2D transition metal dichalcogenide heterostructures for p‐and n‐type photovoltaic self‐powered gas sensor. Adv. Funct. Mater. 30, 2003360 (2020).

    Article 

    Google Scholar 

  • Chen, Y., Ji, W., Yan, K., Gao, J. & Zhang, J. Fuel cell-based self-powered electrochemical sensors for biochemical detection. Nano Energy 61, 173–193 (2019).

    Article 

    Google Scholar 

  • Kanik, M., Marcali, M., Yunusa, M., Elbuken, C. & Bayindir, M. Continuous triboelectric power harvesting and biochemical sensing inside poly (vinylidene fluoride) hollow fibers using microfluidic droplet generation. Adv. Mater. Technol. 1, 1600190 (2016).

    Article 

    Google Scholar 

  • Wang, H. L. et al. Large‐area integrated triboelectric sensor array for wireless static and dynamic pressure detection and mapping. Small 16, 1906352 (2020).

    Article 

    Google Scholar 

  • Sun, T. et al. Wearable textile supercapacitors for self-powered enzyme-free smartsensors. ACS Appl. Mater. Interfaces 12, 21779–21787 (2020).

    Article 

    Google Scholar 

  • Yang, Y. et al. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring. Sens. Actuators A Phys. 301, 111789 (2020).

    Article 

    Google Scholar 

  • Wang, Y. et al. Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator. Nano Energy 73, 104773 (2020).

    Article 

    Google Scholar 

  • Li, L. et al. Moisture-driven power generation for multifunctional flexible sensing systems. Nano Lett. 19, 5544–5552 (2019).

    Article 

    Google Scholar 

  • Wang, Y. & Yang, Y. Superhydrophobic surfaces-based redox-induced electricity from water droplets for self-powered wearable electronics. Nano Energy 56, 547–554 (2019).

    Article 

    Google Scholar 

  • Wu, J. et al. A wheeled robot driven by a liquid‐metal droplet. Adv. Mater. 30, 1805039 (2018).

    Article 

    Google Scholar 

  • Wang, J. et al. Normally transparent tribo-induced smart window. ACS Nano 14, 3630–3639 (2020).

    Article 

    Google Scholar 

  • Chen, G., Liu, X., Li, S., Dong, M. & Jiang, D. A droplet energy harvesting and actuation system for self-powered digital microfluidics. Lab Chip 18, 1026–1034 (2018).

    Article 

    Google Scholar 

  • Guo, Z. H. et al. Self‐powered electrowetting valve for instantaneous and simultaneous actuation of paper‐based microfluidic assays. Adv. Funct. Mater. 29, 1808974 (2019).

    Article 

    Google Scholar 

  • Liu, G. et al. Flexible drug release device powered by triboelectric nanogenerator. Adv. Funct. Mater. 30, 1909886 (2020).

    Article 

    Google Scholar 

  • Liu, Z. et al. Human motion driven self-powered photodynamic system for long-term autonomous cancer therapy. ACS Nano 14, 8074–8083 (2020).

    Article 

    Google Scholar 

  • Song, Y., Min, J. & Gao, W. Wearable and implantable electronics: moving toward precision therapy. ACS Nano 13, 12280–12286 (2019).

    Article 

    Google Scholar 

  • Zhang, W. et al. Multilanguage-handwriting self-powered recognition based on triboelectric nanogenerator enabled machine learning. Nano Energy 77, 105174 (2020).

    Article 

    Google Scholar 

  • Chen, T. et al. Intuitive-augmented human-machine multidimensional nano-manipulation terminal using triboelectric stretchable strip sensors based on minimalist design. Nano Energy 60, 440–448 (2019).

    Article 

    Google Scholar 

  • Khalid, S., Raouf, I., Khan, A., Kim, N. & Kim, H. S. A review of human-powered energy harvesting for smart electronics: recent progress and challenges. Int. J. Precis. Eng. Man. GT. 6, 1–31 (2019).

    Google Scholar 

  • Dong, B. et al. Technology evolution from self-powered sensors to AIoT enabled smart homes. Nano Energy 79, 105414 (2021).

    Article 

    Google Scholar 

  • Wang, H., Han, M., Song, Y. & Zhang, H. Design, manufacturing and applications of wearable triboelectric nanogenerators. Nano Energy 81, 105627 (2021).

    Article 

    Google Scholar 

  • Gunawardhana, K. S. D., Wanasekara, N. D. & Dharmasena, R. I. G. Towards truly wearable systems: optimising and scaling up wearable triboelectric nanogenerators. Iscience 23, 101360 (2020).

    Article 

    Google Scholar 

  • Wang, S., Lin, L. & Wang, Z. L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 12, 6339–6346 (2012).

    Article 

    Google Scholar 

  • Yu, A., Zhu, Y., Wang, W. & Zhai, J. Progress in triboelectric materials: toward high performance and widespread applications. Adv. Funct. Mater. 29, 1900098 (2019).

    Article 

    Google Scholar 

  • Kim, D. W., Lee, J. H., Kim, J. K. & Jeong, U. Material aspects of triboelectric energy generation and sensors. NPG Asia Mater. 12, 1–17 (2020).

    Article 

    Google Scholar 

  • Lee, K. Y. et al. Hydrophobic sponge structure‐based triboelectric nanogenerator. Adv. Mater. 26, 5037–5042 (2014).

    Article 

    Google Scholar 

  • Cheng, P. et al. Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy 57, 432–439 (2019).

    Article 

    Google Scholar 

  • Wang, S. et al. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 13, 2226–2233 (2013).

    Article 

    Google Scholar 

  • Wang, X. et al. Bionic single-electrode electronic skin unit based on piezoelectric nanogenerator. Acs Nano 12, 8588–8596 (2018).

    Article 

    Google Scholar 

  • Wang, S., Xie, Y., Niu, S., Lin, L. & Wang, Z. L. Freestanding triboelectric‐layer‐based nanogenerators for harvesting energy from a moving object or human motion in contact and non‐contact modes. Adv. Mater. 26, 2818–2824 (2014).

    Article 

    Google Scholar 

  • Yin, X. et al. Structure and dimension effects on the performance of layered triboelectric nanogenerators in contact-separation mode. ACS Nano 13, 698–705 (2018).

    Article 

    Google Scholar 

  • Cheng, X. et al. High efficiency power management and charge boosting strategy for a triboelectric nanogenerator. Nano Energy 38, 438–446 (2017).

    Article 

    Google Scholar 

  • Cheng, X. et al. Power management and effective energy storage of pulsed output from triboelectric nanogenerator. Nano Energy 61, 517–532 (2019).

    Article 

    Google Scholar 

  • Priya, S. et al. A review on piezoelectric energy harvesting: materials, methods and circuit. Energy Harvesting Syst. 4, 3–39 (2019).

    Article 

    Google Scholar 

  • Ramadan, K. S., Sameoto, D. & Evoy, S. A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater. Struct. 23, 033001 (2014).

    Article 

    Google Scholar 

  • Mishra, S., Unnikrishnan, L., Nayak, S. K. & Mohanty, S. Advances in piezoelectric polymer composites for energy harvesting applications: a systematic review. Macromol. Mater. Eng. 304, 1800463 (2019).

    Article 

    Google Scholar 

  • Jeong, C. K., Baek, C., Kingon, A. I., Park, K. I. & Kim, S. H. Lead‐free perovskite nanowire‐employed piezopolymer for highly efficient flexible nanocomposite energy harvester. Small 14, 1704022 (2018).

    Article 

    Google Scholar 

  • Xin, Y. et al. Shoes-equipped piezoelectric transducer for energy harvesting: a brief review. Ferroelectrics 493, 12–24 (2016).

    Article 

    Google Scholar 

  • Jiang, L. et al. Flexible piezoelectric ultrasonic energy harvester array for bio-implantable wireless generator. Nano Energy 56, 216–224 (2019).

    Article 

    Google Scholar 

  • Kim, J. et al. Cost-effective and strongly integrated fabric-based wearable piezoelectric energy harvester. Nano Energy 75, 104992 (2020).

    Article 

    Google Scholar 

  • Du, Y., Xu, J., Paul, B. & Eklund, P. Flexible thermoelectric materials and devices. Appl. Mater. Today 12, 366–388 (2018).

    Article 

    Google Scholar 

  • Yuan, J. & Zhu, R. A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator. Appl. Energy 271, 115250 (2020).

    Article 

    Google Scholar 

  • Selloum, D. & Tingry, S. Ethanol/Oxygene microfluidic biofuel cells. Mater. Biomater. Sci. 1, 011–015 (2018).

    Google Scholar 

  • Wang, C. et al. Sustainable and high-power wearable glucose biofuel cell using long-term and high-speed flow in sportswear fabrics. Biosens. Bioelectron. 169, 112652 (2020).

    Article 

    Google Scholar 

  • Gamella, M., Koushanpour, A. & Katz, E. Biofuel cells–activation of micro-and macro-electronic devices. Bioelectrochemistry 119, 33–42 (2018).

    Article 

    Google Scholar 

  • Lv, J. et al. Sweat-based wearable energy harvesting-storage hybrid textile devices. Energy Environ. Sci. 11, 3431–3442 (2018).

    Article 

    Google Scholar 

  • Lee, J. H. et al. Highly stretchable piezoelectric‐pyroelectric hybrid nanogenerator. Adv. Mater. 26, 765–769 (2014).

    Article 

    Google Scholar 

  • Ren, Z. et al. Wearable and self-cleaning hybrid energy harvesting system based on micro/nanostructured haze film. Nano Energy 67, 104243 (2020).

    Article 

    Google Scholar 

  • Wan, J. et al. A flexible hybridized electromagnetic-triboelectric nanogenerator and its application for 3D trajectory sensing. Nano Energy 74, 104878 (2020).

    Article 

    Google Scholar 

  • Zhao, X. et al. Polyimide/graphene nanocomposite foam‐based wind‐driven triboelectric nanogenerator for self‐powered pressure sensor. Adv. Mater. Technol. 4, 1800723 (2019).

    Article 

    Google Scholar 

  • Su, Y. et al. Novel high-performance self-powered humidity detection enabled by triboelectric effect. Sens. Actuators B Chem. 251, 144–152 (2017).

    Article 

    Google Scholar 

  • Xia, K., Zhu, Z., Zhang, H. & Xu, Z. A triboelectric nanogenerator as self-powered temperature sensor based on PVDF and PTFE. Appl. Phys. A 124, 520 (2018).

    Article 

    Google Scholar 

  • Liu, Y. et al. Thin, skin‐integrated, stretchable triboelectric nanogenerators for tactile sensing. Adv. Electron. Mater. 6, 1901174 (2020).

    Article 

    Google Scholar 

  • Yang, Y. et al. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring. Sens. Actuators A Phys. 301, 111789 (2020).

    Article 

    Google Scholar 

  • Wang, Y., Wang, Y. & Yang, Y. Graphene–polymer nanocomposite‐based redox‐induced electricity for flexible self‐powered strain sensors. Adv. Energy Mater. 8, 1800961 (2018).

    Article 

    Google Scholar 

  • Shen, D. et al. Self‐powered wearable electronics based on moisture enabled electricity generation. Adv. Mater. 30, 1705925 (2018).

    Article 

    Google Scholar 

  • Kim, J. et al. Self-charging wearables for continuous health monitoring. Nano Energy 79, 105419 (2020).

    Article 

    Google Scholar 

  • Zhao, J. et al. A fully integrated and self-powered smartwatch for continuous sweat glucose monitoring. ACS Sens. 4, 1925–1933 (2019).

    Article 

    Google Scholar 

  • Yu, Y. et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci. Robot. 5, eaaz7946 (2020).

    Article 

    Google Scholar 

  • Nie, J. et al. Self-powered microfluidic transport system based on triboelectric nanogenerator and electrowetting technique. Acs Nano 12, 1491–1499 (2018).

    Article 

    Google Scholar 

  • Tian, J. et al. Self-powered implantable electrical stimulator for osteoblasts’ proliferation and differentiation. Nano Energy 59, 705–714 (2019).

    Article 

    Google Scholar 

  • Xiao, X., Denis McGourty, K. & Magner, E. Enzymatic biofuel cells for self-powered, controlled drug release. J. Am. Chem. Soc. 142, 11602–11609 (2020).

    Article 

    Google Scholar 

  • Sun, J. et al. Reversible self-powered fluorescent electrochromic windows driven by perovskite solar cells. Chem. Commun. 55, 12060–12063 (2019).

    Article 

    Google Scholar 

  • Wang, Y., Jiang, Y., Wu, H. & Yang, Y. Floating robotic insects to obtain electric energy from water surface for realizing some self-powered functions. Nano Energy 63, 103810 (2019).

    Article 

    Google Scholar 

  • Dong, B. et al. Technology evolution from self-powered sensors to AIoT enabled smart homes. Nano Energy 79, 105414 (2021).

    Article 

    Google Scholar 

  • Guo, H. et al. Self-powered multifunctional electronic skin for a smart anti-counterfeiting signature system. ACS Appl. Mater. Interfaces 12, 22357–22364 (2020).

    Article 

    Google Scholar 

  • Tang, Y. et al. Triboelectric touch‐free screen sensor for noncontact gesture recognizing. Adv. Funct. Mater. 30, 1907893 (2020).

    Article 

    Google Scholar 

  • He, T. et al. Self-powered glove-based intuitive interface for diversified control applications in real/cyber space. Nano Energy 58, 641–651 (2019).

    Article 

    Google Scholar 

  • Maharjan, P. et al. A human skin-inspired self-powered flex sensor with thermally embossed microstructured triboelectric layers for sign language interpretation. Nano Energy 76, 105071 (2020).

    Article 

    Google Scholar 

  • Wen, F. et al. Machine learning glove using self‐powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv. Sci. 7, 2000261 (2020).

    Article 

    Google Scholar 

  • Yun, J., Jayababu, N. & Kim, D. Self-powered transparent and flexible touchpad based on triboelectricity towards artificial intelligence. Nano Energy 78, 105325 (2020).

    Article 

    Google Scholar 

  • Liu, H. et al. An epidermal sEMG tattoo-like patch as a new human–machine interface for patients with loss of voice. Microsyst. Nanoeng. 6, 1–13 (2020).

    Article 

    Google Scholar 

  • Ji, X., Zhao, T., Zhao, X., Lu, X. & Li, T. Triboelectric nanogenerator based smart electronics via machine learning. Adv. Mater. Technol. 5, 1900921 (2020).

    Article 

    Google Scholar 



  • Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    theholisticadmin
    • Website

    Related Posts

    Reiki: How Energy Healing Works

    July 16, 2024

    Access Consciousness: Phrenology fused with energy medicine

    July 8, 2024

    Newmarket Reiki practitioner brings healing energy to stressed pets

    June 23, 2024
    Leave A Reply Cancel Reply

    Products
    • Handcraft Blends Organic Castor Oil - 16 Fl Oz - 100% Pure and Natural
    • Bee's Wrap Reusable Beeswax Food Wraps
    • WeeSprout Double Zipper Reusable Food Pouch - 6 Pack - 5 fl oz
    Don't Miss

    8 Ayurvedic drinks and tonics to boost your immunity this monsoon season

    By theholisticadminJuly 30, 2024

    Cinnamon Tea Cinnamon has anti-inflammatory and antibacterial properties, making it perfect for maintaining overall health…

    An Ayurvedic Roadmap for Seasonal Self-Care

    July 30, 2024

    Can Zydus Wellness overcome skepticism about health drinks as it enters the Ayurvedic beverage space with Complan Immuno-Gro? – Brand Wagon News

    July 30, 2024

    Zydus Wellness launches Ayurvedic beverage Complan Immuno-Gro with campaign featuring actress Sneha

    July 30, 2024

    Subscribe to Updates

    Subscribe to our newsletter and never miss our latest news

    Subscribe my Newsletter for New Posts & tips Let's stay updated!

    About Us

    Welcome to TheHolisticHealing.com!

    At The Holistic Healing, we are passionate about providing comprehensive information and resources to support your journey towards holistic well-being. Our platform is dedicated to empowering individuals to take charge of their health and wellness through a holistic approach that integrates physical, mental, and spiritual aspects.

    Facebook X (Twitter) Pinterest YouTube WhatsApp
    Our Picks

    4 supplements you should absolutely avoid, found at HomeGoods

    July 30, 2024

    This anti-aging snail slime serum is just $14 (over 40% off), so grab it!

    July 30, 2024

    Book Review: The subtle power of emotional abuse

    July 30, 2024
    Most Popular

    Energy healed me — over the phone! Scientist explains how

    October 19, 2011

    Spirituality and Healing | Harvard Medical School

    January 14, 2015

    Healing through music – Harvard Health

    November 5, 2015
    • Home
    • About us
    • Advertise with Us
    • Contact us
    • DMCA Policy
    • Privacy Policy
    • Terms and Conditions
    © 2025 theholistichealing. Designed by theholistichealing.

    Type above and press Enter to search. Press Esc to cancel.

    Sign In or Register

    Welcome Back!

    Login to your account below.

    Prove your humanity


    Lost password?