Close Menu
  • Home
  • Wellness
    • Women’s Health
    • Anti-Aging
    • Mental Health
  • Alternate Healing
    • Energy Healing
    • Aromatherapy
    • Acupuncture
    • Hypnotherapy
    • Ayurveda
    • Herbal Remedies
    • Flower Essences
    • Naturopathy
  • Spirituality
    • Meditation
    • Pilates & Yoga
  • Nutrition
    • Vitamins & Supplements
    • Recipes
  • Shop

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

What's Hot

4 supplements you should absolutely avoid, found at HomeGoods

July 30, 2024

This anti-aging snail slime serum is just $14 (over 40% off), so grab it!

July 30, 2024

Book Review: The subtle power of emotional abuse

July 30, 2024
Facebook X (Twitter) Instagram
  • Home
  • About us
  • Advertise with Us
  • Contact us
  • DMCA Policy
  • Privacy Policy
  • Terms and Conditions
Login
0 Shopping Cart
The Holistic Healing
  • Home
  • Wellness
    • Women’s Health
    • Anti-Aging
    • Mental Health
  • Alternate Healing
    • Energy Healing
    • Aromatherapy
    • Acupuncture
    • Hypnotherapy
    • Ayurveda
    • Herbal Remedies
    • Flower Essences
    • Naturopathy
  • Spirituality
    • Meditation
    • Pilates & Yoga
  • Nutrition
    • Vitamins & Supplements
    • Recipes
  • Shop
The Holistic Healing
Home » PND-Net: plant nutrition deficiency and disease classification using graph convolutional network
Nutrition

PND-Net: plant nutrition deficiency and disease classification using graph convolutional network

theholisticadminBy theholisticadminJuly 5, 2024No Comments12 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr Email Reddit
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Jung, M. et al. Construction of deep learning-based disease detection model in plants. Sci. Rep. 13, 7331 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aiswarya, J., Mariammal, K. & Veerappan, K. Plant nutrient deficiency detection and classification-a review. In 2023 5th International Conference Inventive Research in Computing Applications (ICIRCA). 796–802 (IEEE, 2023).

  • Yan, Q., Lin, X., Gong, W., Wu, C. & Chen, Y. Nutrient deficiency diagnosis of plants based on transfer learning and lightweight convolutional neural networks Mobilenetv3-large. In Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition. 26–33 (2022).

  • Sudhakar, M. & Priya, R. Computer vision based machine learning and deep learning approaches for identification of nutrient deficiency in crops: A survey. Nat. Environ. Pollut. Technol. 22 (2023).

  • Noon, S. K., Amjad, M., Qureshi, M. A. & Mannan, A. Use of deep learning techniques for identification of plant leaf stresses: A review. Sustain. Comput. Inform. Syst. 28, 100443 (2020).

    Google Scholar 

  • Waheed, H. et al. Deep learning based disease, pest pattern and nutritional deficiency detection system for “Zingiberaceae’’ crop. Agriculture 12, 742 (2022).

    Article 

    Google Scholar 

  • Barbedo, J. G. A. Detection of nutrition deficiencies in plants using proximal images and machine learning: A review. Comput. Electron. Agric. 162, 482–492 (2019).

    Article 

    Google Scholar 

  • Shadrach, F. D., Kandasamy, G., Neelakandan, S. & Lingaiah, T. B. Optimal transfer learning based nutrient deficiency classification model in ridge gourd (Luffa acutangula). Sci. Rep. 13, 14108 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sathyavani, R., JaganMohan, K. & Kalaavathi, B. Classification of nutrient deficiencies in rice crop using DenseNet-BC. Mater. Today Proc. 56, 1783–1789 (2022).

    Article 
    CAS 

    Google Scholar 

  • Haris, S., Sai, K. S., Rani, N. S. et al. Nutrient deficiency detection in mobile captured guava plants using light weight deep convolutional neural networks. In 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC). 1190–1193 (IEEE, 2023).

  • Munir, S., Seminar, K. B., Sukoco, H. et al. The application of smart and precision agriculture (SPA) for measuring leaf nitrogen content of oil palm in peat soil areas. In 2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE). 650–655 (IEEE, 2023).

  • Lu, J., Peng, K., Wang, Q. & Sun, C. Lettuce plant trace-element-deficiency symptom identification via machine vision methods. Agriculture 13, 1614 (2023).

    Article 
    CAS 

    Google Scholar 

  • Omer, S. M., Ghafoor, K. Z. & Askar, S. K. Lightweight improved YOLOv5 model for cucumber leaf disease and pest detection based on deep learning. In Signal, Image and Video Processing. 1–14 (2023).

  • Kumar, A. & Bhowmik, B. Automated rice leaf disease diagnosis using CNNs. In 2023 IEEE Region 10 Symposium (TENSYMP). 1–6 (IEEE, 2023).

  • Senjaliya, H. et al. A comparative study on the modern deep learning architectures for predicting nutritional deficiency in rice plants. In 2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET). 1–6 (IEEE, 2023).

  • Ennaji, O., Vergutz, L. & El Allali, A. Machine learning in nutrient management: A review. Artif. Intell. Agric. (2023).

  • Rathnayake, D., Kumarasinghe, K., Rajapaksha, R. & Katuwawala, N. Green insight: A novel approach to detecting and classifying macro nutrient deficiencies in paddy leaves. In 2023 8th International Conference Information Technology Research (ICITR). 1–6 (IEEE, 2023).

  • Asaari, M. S. M., Shamsudin, S. & Wen, L. J. Detection of plant stress condition with deep learning based detection models. In 2023 International Conference on Energy, Power, Environment, Control, and Computing (ICEPECC). 1–5 (IEEE, 2023).

  • Tavanapong, W. et al. Artificial intelligence for colonoscopy: Past, present, and future. IEEE J. Biomed. Health Inform. 26, 3950–3965 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. In International Conference on Learning Representations (2017).

  • Zhang, S., Tong, H., Xu, J. & Maciejewski, R. Graph convolutional networks: A comprehensive review. Comput. Soc. Netw. 6, 1–23 (2019).

    Article 

    Google Scholar 

  • Bera, A., Wharton, Z., Liu, Y., Bessis, N. & Behera, A. SR-GNN: Spatial relation-aware graph neural network for fine-grained image categorization. IEEE Trans. Image Process. 31, 6017–6031 (2022).

    Article 
    ADS 

    Google Scholar 

  • Qu, Z., Yao, T., Liu, X. & Wang, G. A graph convolutional network based on univariate neurodegeneration biomarker for Alzheimer’s disease diagnosis. IEEE J. Transl. Eng. Health Med. (2023).

  • Khlifi, M. K., Boulila, W. & Farah, I. R. Graph-based deep learning techniques for remote sensing applications: Techniques, taxonomy, and applications—A comprehensive review. Comput. Sci. Rev. 50, 100596 (2023).

    Article 
    MathSciNet 

    Google Scholar 

  • Sunitha, P., Uma, B., Channakeshava, S. & Babu, S. A fully labelled image dataset of banana leaves deficient in nutrients. Data Brief 48, 109155 (2023).

    Article 

    Google Scholar 

  • Tuesta-Monteza, V. A., Mejia-Cabrera, H. I. & Arcila-Diaz, J. CoLeaf-DB: Peruvian coffee leaf images dataset for coffee leaf nutritional deficiencies detection and classification. Data Brief 48, 109226 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chungcharoen, T. et al. Machine learning-based prediction of nutritional status in oil palm leaves using proximal multispectral images. Comput. Electron. Agric. 198, 107019 (2022).

    Article 

    Google Scholar 

  • Bhavya, T., Seggam, R. & Jatoth, R. K. Fertilizer recommendation for rice crop based on NPK nutrient deficiency using deep neural networks and random forest algorithm. In 2023 3rd International Conference on Artificial Intelligence and Signal Processing (AISP). 1–5 (IEEE, 2023).

  • Dey, B., Haque, M. M. U., Khatun, R. & Ahmed, R. Comparative performance of four CNN-based deep learning variants in detecting Hispa pest, two fungal diseases, and npk deficiency symptoms of rice (Oryza sativa). Comput. Electron. Agric. 202, 107340 (2022).

    Article 

    Google Scholar 

  • Cevallos, C., Ponce, H., Moya-Albor, E. & Brieva, J. Vision-based analysis on leaves of tomato crops for classifying nutrient deficiency using convolutional neural networks. In 2020 International Joint Conference on Neural Networks (IJCNN). 1–7 (IEEE, 2020).

  • Espejo-Garcia, B., Malounas, I., Mylonas, N., Kasimati, A. & Fountas, S. Using Efficientnet and transfer learning for image-based diagnosis of nutrient deficiencies. Comput. Electron. Agric. 196, 106868 (2022).

    Article 

    Google Scholar 

  • Wang, C., Ye, Y., Tian, Y. & Yu, Z. Classification of nutrient deficiency in rice based on cnn model with reinforcement learning augmentation. In 2021 International Symposium on Artificial Intelligence and its Application on Media (ISAIAM). 107–111 (IEEE, 2021).

  • Bahtiar, A. R., Santoso, A. J., Juhariah, J. et al. Deep learning detected nutrient deficiency in chili plant. In 2020 8th International Conference on Information and Communication Technology (ICoICT). 1–4 (IEEE, 2020).

  • Rahadiyan, D., Hartati, S., Nugroho, A. P. et al. Feature aggregation for nutrient deficiency identification in chili based on machine learning. Artif. Intell. Agric. (2023).

  • Aishwarya, M. & Reddy, P. Ensemble of CNN models for classification of groundnut plant leaf disease detection. Smart Agric. Technol. 100362 (2023).

  • Nadafzadeh, M. et al. Design, fabrication and evaluation of a robot for plant nutrient monitoring in greenhouse (case study: iron nutrient in spinach). Comput. Electron. Agric. 217, 108579 (2024).

    Article 

    Google Scholar 

  • Desiderio, J. M. H., Tenorio, A. J. F. & Manlises, C. O. Health classification system of romaine lettuce plants in hydroponic setup using convolutional neural networks (CNN). In 2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET). 1–6 (IEEE, 2022).

  • Costa, L., Kunwar, S., Ampatzidis, Y. & Albrecht, U. Determining leaf nutrient concentrations in citrus trees using UAV imagery and machine learning. Precis. Agric. 1–22 (2022).

  • Lanjewar, M. G. & Parab, J. S. CNN and transfer learning methods with augmentation for citrus leaf diseases detection using PaaS cloud on mobile. Multimed. Tools Appl. 1–26 (2023).

  • Lanjewar, M. G., Morajkar, P. P. Modified transfer learning frameworks to identify potato leaf diseases. Multimed. Tools Appl. 1–23 (2023).

  • Dissanayake, A. et al. Detection of diseases and nutrition in bell pepper. In 2023 5th International Conference on Advancements in Computing (ICAC). 286–291 (IEEE, 2023).

  • Wu, Z., Jiang, F. & Cao, R. Research on recognition method of leaf diseases of woody fruit plants based on transfer learning. Sci. Rep. 12, 15385 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, H., Lv, H., Li, J., Liu, Y. & Deng, L. Research on maize disease identification methods in complex environments based on cascade networks and two-stage transfer learning. Sci. Rep. 12, 18914 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kukreja, V., Sharma, R., Vats, S. & Manwal, M. DeepLeaf: Revolutionizing rice disease detection and classification using convolutional neural networks and random forest hybrid model. In 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT). 1–6 (IEEE, 2023).

  • Bezabih, Y. A., Salau, A. O., Abuhayi, B. M., Mussa, A. A. & Ayalew, A. M. CPD-CCNN: Classification of pepper disease using a concatenation of convolutional neural network models. Sci. Rep. 13, 15581 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kini, A. S., Prema, K. & Pai, S. N. Early stage black pepper leaf disease prediction based on transfer learning using convnets. Sci. Rep. 14, 1404 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, Q. et al. A classification method for soybean leaf diseases based on an improved convnext model. Sci. Rep. 13, 19141 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, X., Chen, W. & Xu, Y. ERCP-Net: A channel extension residual structure and adaptive channel attention mechanism for plant leaf disease classification network. Sci. Rep. 14, 4221 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Babatunde, R. S. et al. A novel smartphone application for early detection of habanero disease. Sci. Rep. 14, 1423 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nagasubramanian, G. et al. Ensemble classification and IoT-based pattern recognition for crop disease monitoring system. IEEE Internet Things J. 8, 12847–12854 (2021).

    Article 

    Google Scholar 

  • Nachtigall, L. G., Araujo, R. M. & Nachtigall, G. R. Classification of apple tree disorders using convolutional neural networks. In 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI). 472–476 (IEEE, 2016).

  • Borhani, Y., Khoramdel, J. & Najafi, E. A deep learning based approach for automated plant disease classification using vision transformer. Sci. Rep. 12, 11554 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aishwarya, M. & Reddy, A. P. Dataset of groundnut plant leaf images for classification and detection. Data Brief 48, 109185 (2023).

    Article 

    Google Scholar 

  • Shi, J. et al. Cervical cell classification with graph convolutional network. Comput. Methods Prog. Biomed. 198, 105807 (2021).

    Article 

    Google Scholar 

  • Fahad, N. M., Azam, S., Montaha, S. & Mukta, M. S. H. Enhancing cervical cancer diagnosis with graph convolution network: AI-powered segmentation, feature analysis, and classification for early detection. Multimed. Tools Appl. 1–25 (2024).

  • Lanjewar, M. G., Panchbhai, K. G. & Patle, L. B. Fusion of transfer learning models with LSTM for detection of breast cancer using ultrasound images. Comput. Biol. Med. 169, 107914 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • He, K., Zhang, X., Ren, S. & Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37, 1904–1916 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Szegedy, C. et al. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1–9 (2015).

  • Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2818–2826 (2016).

  • Chollet, F. Xception: Deep learning with depthwise separable convolutions. In IEEE Conference on Computer Vision Pattern Recognition. 1251–1258 (2017).

  • He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition. 770–778 (2016).

  • Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C. MobileNetv2: Inverted residuals and linear bottlenecks. In Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition. 4510–4520 (2018).

  • Bera, A., Nasipuri, M., Krejcar, O. & Bhattacharjee, D. Fine-grained sports, yoga, and dance postures recognition: A benchmark analysis. IEEE Trans. Instrum. Meas. 72, 1–13 (2023).

    Article 

    Google Scholar 

  • Bera, A., Wharton, Z., Liu, Y., Bessis, N. & Behera, A. Attend and guide (AG-Net): A keypoints-driven attention-based deep network for image recognition. IEEE Trans. Image Process. 30, 3691–3704 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Singh, D. et al. PlantDoc: A dataset for visual plant disease detection. In Proceedings of the 7th ACM IKDD CoDS and 25th COMAD. 249–253 (ACM, 2020).

  • Hameed, Z., Garcia-Zapirain, B., Aguirre, J. J. & Isaza-Ruget, M. A. Multiclass classification of breast cancer histopathology images using multilevel features of deep convolutional neural network. Sci. Rep. 12, 15600 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shabrina, N. H. et al. A novel dataset of potato leaf disease in uncontrolled environment. Data Brief 52, 109955 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Spanhol, F. A., Oliveira, L. S., Petitjean, C. & Heutte, L. A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 63, 1455–1462 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Plissiti, M. E. et al. SIPAKMED: A new dataset for feature and image based classification of normal and pathological cervical cells in Pap smear images. In 2018 25th IEEE International Conf. Image Processing (ICIP). 3144–3148 (IEEE, 2018).

  • Van Der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15, 3221–3245 (2014).

    MathSciNet 

    Google Scholar 

  • Selvaraju, R. R. et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In 2017 IEEE International Conference on Computer Vision (ICCV). 618–626 (2017).

  • Han, K. A. M., Maneerat, N., Sepsirisuk, K. & Hamamoto, K. Banana plant nutrient deficiencies identification using deep learning. In 2023 9th International Conference on Engineering, Applied Sciences, and Technology (ICEAST). 5–9 (IEEE, 2023).

  • Ahmad, A., El Gamal, A. & Saraswat, D. Toward generalization of deep learning-based plant disease identification under controlled and field conditions. IEEE Access 11, 9042–9057 (2023).

    Article 

    Google Scholar 

  • Abdallah, N. et al. Enhancing histopathological image classification of invasive ductal carcinoma using hybrid harmonization techniques. Sci. Rep. 13, 20014 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, Z. et al. Breast cancer multi-classification from histopathological images with structured deep learning model. Sci. Rep. 7, 4172 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Basak, H., Kundu, R., Chakraborty, S. & Das, N. Cervical cytology classification using PCA and GWO enhanced deep features selection. SN Comput. Sci. 2, 369 (2021).

    Article 

    Google Scholar 

  • Mohammed, M. A., Abdurahman, F. & Ayalew, Y. A. Single-cell conventional pap smear image classification using pre-trained deep neural network architectures. BMC Biomed. Eng. 3, 11 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yaman, O. & Tuncer, T. Exemplar pyramid deep feature extraction based cervical cancer image classification model using pap-smear images. Biomed. Signal Process. Control 73, 103428 (2022).

    Article 

    Google Scholar 

  • Jiang, H. et al. Deep learning for computational cytology: A survey. Med. Image Anal. 84, 102691 (2023).

    Article 
    PubMed 

    Google Scholar 



  • Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    theholisticadmin
    • Website

    Related Posts

    Physicians need better nutrition training

    July 7, 2024

    Senior Meals: Menus posted on Pine River Nutrition site, July 8-12, 2024 – Pine and Lakes Echo Journal

    July 7, 2024

    Bigger, bolder nutrition labelling: COS may put it back on FSSAI agenda | Economic & Policy News

    July 7, 2024
    Leave A Reply Cancel Reply

    Products
    • Handcraft Blends Organic Castor Oil - 16 Fl Oz - 100% Pure and Natural
    • Bee's Wrap Reusable Beeswax Food Wraps
    • WeeSprout Double Zipper Reusable Food Pouch - 6 Pack - 5 fl oz
    Don't Miss

    8 Ayurvedic drinks and tonics to boost your immunity this monsoon season

    By theholisticadminJuly 30, 2024

    Cinnamon Tea Cinnamon has anti-inflammatory and antibacterial properties, making it perfect for maintaining overall health…

    An Ayurvedic Roadmap for Seasonal Self-Care

    July 30, 2024

    Can Zydus Wellness overcome skepticism about health drinks as it enters the Ayurvedic beverage space with Complan Immuno-Gro? – Brand Wagon News

    July 30, 2024

    Zydus Wellness launches Ayurvedic beverage Complan Immuno-Gro with campaign featuring actress Sneha

    July 30, 2024

    Subscribe to Updates

    Subscribe to our newsletter and never miss our latest news

    Subscribe my Newsletter for New Posts & tips Let's stay updated!

    About Us

    Welcome to TheHolisticHealing.com!

    At The Holistic Healing, we are passionate about providing comprehensive information and resources to support your journey towards holistic well-being. Our platform is dedicated to empowering individuals to take charge of their health and wellness through a holistic approach that integrates physical, mental, and spiritual aspects.

    Facebook X (Twitter) Pinterest YouTube WhatsApp
    Our Picks

    4 supplements you should absolutely avoid, found at HomeGoods

    July 30, 2024

    This anti-aging snail slime serum is just $14 (over 40% off), so grab it!

    July 30, 2024

    Book Review: The subtle power of emotional abuse

    July 30, 2024
    Most Popular

    Energy healed me — over the phone! Scientist explains how

    October 19, 2011

    Spirituality and Healing | Harvard Medical School

    January 14, 2015

    Healing through music – Harvard Health

    November 5, 2015
    • Home
    • About us
    • Advertise with Us
    • Contact us
    • DMCA Policy
    • Privacy Policy
    • Terms and Conditions
    © 2025 theholistichealing. Designed by theholistichealing.

    Type above and press Enter to search. Press Esc to cancel.

    Sign In or Register

    Welcome Back!

    Login to your account below.

    Prove your humanity


    Lost password?