Zamroziewicz, M. & Barbey, A. Nutritional cognitive neuroscience: innovations for healthy brain aging. Front. Neurosci. 10, 240 (2016).
Google Scholar
Jensen, D., Leoni, V., Klein-Flügge, M., Ebmeier, K. & Suri, S. Associations of dietary markers with brain volume and connectivity: a systematic review of MRI studies. Ageing Res. Rev. 70, 101360 (2021).
Google Scholar
Tracey, T., Steyn, F., Wolvetang, E. & Ngo, S. Neuronal lipid metabolism: multiple pathways driving functional outcomes in health and disease. Front. Mol. Neurosci. 11, 10 (2018).
Google Scholar
Köbe, T., Witte, A., Schnelle, A., Lesemann, A. & Fabian, S. Combined omega-3 fatty acids, aerobic exercise and cognitive stimulation prevents decline in gray matter volume of the frontal, parietal and cingulate cortex in patients with mild cognitive impairment. NeuroImage 131, 226–238 (2016).
Google Scholar
Witte, A., Kerti, L., Hermannstädter, H., Fiebach, J. & Schreiber, S. Long-chain omega-3 fatty acids improve brain function and structure in older adults. Cereb. Cortex 24, 3059–3068 (2014).
Google Scholar
Jernerén, F., Elshorbagy, A., Oulhaj, A., Smith, S. & Refsum, H. Brain atrophy in cognitively impaired elderly: the importance of long-chain ω-3 fatty acids and B vitamin status in a randomized controlled trial. Am. J. Clin. Nutr. 102, 215–221 (2015).
Google Scholar
Sueyasu, T., Yasumoto, K., Tokuda, H., Kaneda, Y. & Obata, H. Effects of long-chain polyunsaturated fatty acids in combination with lutein and zeaxanthin on episodic memory in healthy older adults. Nutrients 15, 2825 (2023).
Google Scholar
Zwilling, C., Strang, A., Anderson, E., Jurcsisn, J. & Johnson, E. Enhanced physical and cognitive performance in active duty Airmen: evidence from a randomized multimodal physical fitness and nutritional intervention. Nat. Sci. Rep. 10, 17826 (2020).
Google Scholar
Mazereeuw, G., Lanctôt, K., Chau, S., Swardfager, W. & Herrmann, N. Effects of ω-3 fatty acids on cognitive performance: a meta-analysis. Neurobiol. Aging 33, e17–e29 (2012).
Google Scholar
Franzoni, F. et al. Oxidative stress and cognitive decline: the neuroprotective role of natural antioxidants. Front. Neurosci. 15, 729–757 (2021).
Google Scholar
Terracina, S., Petrella, C., Francati, S., Lucarelli, M. & Barbato, C. Antioxidant intervention to improve cognition in the aging brain: the example of hydroxytyrosol and resveratrol. Int. J. Mol. Sci. 23, 156–174 (2022).
Google Scholar
Lindbergh, C., Lv, J., Zhao, Y., Mewborn, C. & Puente, A. The effects of lutein and zeaxanthin on resting state functional connectivity in older Caucasian adults: a randomized controlled trial. Brain Imaging Behav. 14, 668–681 (2020).
Google Scholar
Sloan, R., Wall, M. & Yeung, L. Insights into the role of diet and dietary flavanols in cognitive aging: results of a randomized controlled trial. Sci. Rep. 11, 3837 (2021).
Google Scholar
Yeh, T., Yuan, C., Ascherio, A., Rosner, B. & Willett, W. Long-term dietary flavonoid intake and subjective cognitive decline in US men and women. Neurology 97, e1041–e1056 (2021).
Google Scholar
Nakazaki, E., Mah, E., Sanoshy, K., Citrolo, D. & Watanabe, F. Citicoline and memory function in healthy older adults: a randomized, double-blind, placebo-controlled clinical trial. J. Nutr. 151, 2153–2160 (2021).
Google Scholar
López-Otín, C., Blasco, M., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).
Google Scholar
Kirkwood, T. Understanding the odd science of aging. Cell 120, 437–447 (2005).
Google Scholar
Kirkwood, T. B. A systematic look at an old problem. Nature 451, 644–647 (2008).
Wrigglesworth, J., Ward, P., Harding, I., Nilaweera, D. & Wu, Z. Factors associated with brain ageing—a systematic review. BMC Neurolol. 21, 312 (2021).
Google Scholar
Bethlehem, R., Seidlitz, J., White, S. & Vogel, J. Brain charts for the human lifespan. Nature 604, 525–533 (2022).
Google Scholar
Harada, C., Natelson Love, M. & Triebel, K. Normal cognitive aging. Clin. Geriatr. Med. 29, 737–752 (2013).
Google Scholar
Raz, N. & Rodrigue, K. Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci. Biobehav. Rev. 30, 730–748 (2006).
Google Scholar
Sexton, C., Walhovd, K., Storsve, A., Tamnes, C. & Westlye, L. Accelerated changes in white matter microstructure during aging: a longitudinal diffusion tensor imaging study. J. Neurosci. 34, 15425–15436 (2014).
Google Scholar
Lockhart, S. & DeCarli, C. Structural imaging measures of brain aging. Neuropsychol. Rev. 24, 271–289 (2014).
Google Scholar
Fjell, A., McEvoy, L., Holland, D., Dale, A. & Walhovd, K. Alzheimer’s Disease Neuroimaging Initiative Brain changes in older adults at very low risk for Alzheimer’s disease. J. Neurosci. 33, 8237–8242 (2013).
Google Scholar
Park, D. & Reuter-Lorenz, P. The adaptive brain: aging and neurocognitive scaffolding. Annu. Rev. Psychol. 60, 173–196 (2009).
Google Scholar
Salthouse, T. What and when of cognitive aging. Curr. Direc. Psychol. Sci. 13, 140–144 (2004).
Google Scholar
IJ, D., Corley, J., Gow, A., Harris, S. & Houlihan, L. Age-associated cognitive decline. Br. Med. Bull. 92, 135–152 (2009).
Google Scholar
Craik, F. I., Salthouse, T. A. The Handbook of Aging and Cogntion, 1st edn (Psychology Press, New York City, 2008).
Mattay, V., Goldberg, T., Sambataro, F. & Weinberger, D. Neurobiology of cognitive aging: insights from imaging genetics. Biol. Psychol. 79, 9–22 (2008).
Google Scholar
Nyberg, L. & Pudas, S. Successful memory aging. Annu. Rev. Psychol. 70, 219–243 (2019).
Google Scholar
Franke, K., Ziegler, G., Klöppel, S. & Gaser, C. Alzheimer’s Disease Neuroimaging Initiative Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage 50, 883–892 (2010).
Google Scholar
Liem, F. Predicting brain-age from multimodal imaging data captures cognitive impairment. Neuroimage 148, 179–188 (2017).
Google Scholar
Franke, K. & Gaser, C. Ten years of brainAGE as a neuroimaging biomarker of brain aging: what insights have we gained? Front. Neurol 10, 789 (2019).
Google Scholar
Talukdar, T., Zwilling, C. & Barbey, A. Integrating nutrient biomarkers, cognitive function, and structural MRI data to build multivariate phenotypes of healthy aging. J. Nutr. 153, 1338–1346 (2023).
Google Scholar
Zamroziewicz, M., Paul, E. J., Zwilling, C. E. & Barbey, A. K. Determinants of fluid intelligence in healthy aging: omega-3 polyunsaturated fatty acid status and frontoparietal cortex structure. Nutr. Neurosci. 21, 570–579 (2018).
Google Scholar
Zamroziewicz, M., Paul, E., Zwilling, C. & Barbey, A. Predictors of memory in healthy aging: polyunsaturated fatty acid balance and fornix white matter integrity. Aging Dis. 8, 372–383 (2017).
Google Scholar
Galea, I. The blood-brain barrier in systemic infection and inflammation. Cell Mol. Immunol. 18, 2489–2501 (2021).
Google Scholar
Sankowski, R., Mader, S. & Valdés-Ferrer, S. Systemic inflammation and the brain: novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration. Front. Cell Neurosci. 9, 29 (2015).
Google Scholar
Sun, Y., Koyama, Y. & Shimada, S. Inflammation from peripheral organs to the brain: how does systemic inflammation cause neuroinflammation? Front. Aging Neurosci. 14, 903455 (2022).
Google Scholar
Sartori, A., Vance, D., Slater, L. & Crowe, M. The impact of inflammation on cognitive function in older adults: implications for healthcare practice and research. J. Neurosci. Nurs. 44, 206–217 (2012).
Google Scholar
Sæther, L., Ueland, T., Haatveit, B., Maglanoc, L. & Szabo, A. Inflammation and cognition in severe mental illness: patterns of covariation and subgroups. Mol. Psychiatry 28, 1284–1292 (2023).
Google Scholar
Kipinoinen, T., Toppala, S., Rinne, J., Viitanen, M. & Jula, A. Association of midlife inflammatory markers with cognitive performance at 10-year follow-up. Neurology 99, e2294–e2302 (2022).
Google Scholar
Soberman, R. & Christmas, P. The organization and consequences of eicosanoid signaling. J. Clin. Investig. 111, 1107–1113 (2003).
Google Scholar
Goyens, P., Spilker, M., Zock, P., Katan, M. & Mensink, R. Conversion of α-linolenic acid in humans is influenced by the absolute amounts of α-linolenic acid and linoleic acid in the diet and not by their ratio. Am. J. Clin. Nutr. 84, 44–53 (2006).
Google Scholar
Chen, Y., Qiu, X. & Yang, J. Comparing the in vitro antitumor, antioxidant and anti-inflammatory activities between two new very long-chain polyunsaturated fatty acids, docosadienoic acid (DDA) and docosatrienoic acid (DTA), and docosahexaenoic acid (DHA). Nutr. Cancer 73, 1697–1707 (2021).
Google Scholar
Henry, G., Momin, R., Nair, M. & Dewitt, D. Antioxidant and cyclooxygenase activities of fatty acids found in food. J. Agric. Food Chem. 50, 2231–2234 (2002).
Google Scholar
Caballero, B. Ed., Encyclopedia of Human Nutrition in Health Effects of Saturated Fatty Acids, 215–219 (Academic Press, 2013).
Lemaitre, R. & King, I. Very long-chain saturated fatty acids and diabetes and cardiovascular disease. Curr. Opin. Lipidol. 33, 76–82 (2022).
Google Scholar
Li, D., Misialek, J., Jing, M., Tsai, M. & Eckfeldt, J. Plasma phospholipid very-long-chain SFAs in midlife and 20-year cognitive change in the Atherosclerosis Risk in Communities (ARIC): a cohort study. Am. J. Clin. Nutr. 111, 1252–1258 (2020).
Google Scholar
Zamroziewicz, M., Talukdar, M., Zwilling, C. & Barbey, A. Nutritional status, brain network organization, and general intelligence. NeuroImage 161, 241–250 (2017).
Google Scholar
Burdge, G., Tricon, S., Morgan, R., Kliem, K. & Childs, C. Incorporation of cis-9, trans-11 conjugated linoleic acid and vaccenic acid (trans-11 18:1) into plasma and leucocyte lipids in healthy men consuming dairy products naturally enriched in these fatty acids. Br. J. Nutr. 94, 237–243 (2005).
Google Scholar
Field, C., Blewett, H., Proctor, S. & Vine, D. Human health benefits of vaccenic acid. Appl. Physiol. Nutr. Metab. 34, 979–991 (2009).
Google Scholar
Murru, E., Carta, G., Manca, C., Sogos, V. & Pistis, M. Conjugated linoleic acid and brain metabolism: a possible anti-neuroinflammatory role mediated by PPARα activation. Front. Pharmacol. 11, 587140 (2021).
Google Scholar
Fan, Y., Meng, H., Hu, G. & Li, F. Iosynthesis of nervonic acid and perspectives for its production by microalgae and other microorganisms. Appl. Microbiol. Biotechnol. 102, 3027–3035 (2018).
Google Scholar
Zwilling, C., Talukdar, T., Zamroziewicz, M. & Barbey, A. Nutrient biomarker patterns, cognitive function, and fMRI measures of network efficiency in the aging brain. NeuroImage 188, 239–251 (2019).
Google Scholar
Power, R., Nolan, J., Prado-Cabrero, A., Roche, W. & Coen, R. Omega-3 fatty acid, carotenoid and vitamin E supplementation improves working memory in older adults: A randomised clinical trial. Clin Nutr 41, 405–414 (2022).
Google Scholar
Ceravolo, S., Hammond, B., Oliver, W., Clementz, B. & Miller, L. Dietary carotenoids lutein and zeaxanthin change brain activation in older adult participants: a randomized, double-masked, placebo-controlled trial. Mol. Nutr. Food Res. 63, 15 (2019).
Google Scholar
Tanprasertsuk, J., Scott, T., Barbey, A., Barger, K. & Wang, X. Carotenoid-rich brain nutrient pattern is positively correlated with higher cognition and lower depression in the oldest old with no dementia. Front. Nutr. 8, 704691 (2021).
Google Scholar
Lee, K., Cha, M. & Lee, B. Neuroprotective effect of antioxidants in the brain. Int. J. Mol. Sci. 21, 7152 (2020).
Google Scholar
La Fata, G., Weber, P. & Mohajeri, M. Effects of vitamin E on cognitive performance during ageing and in Alzheimer’s disease. Nutrients 6, 5453–5472 (2014).
Google Scholar
Lee, P. & Ulatowski, L. Vitamin E: mechanism of transport and regulation in the CNS. IUBMB Life 71, 424–429 (2019).
Google Scholar
Colom, R., Karama, S., Jung, R. & Haier, R. Human intelligence and brain networks. Front. Psychol. 12, 489–501 (2010).
Zamroziewicz, M., Zwilling, C. & Barbey, A. Inferior prefrontal cortex mediates the relationship between phosphatidylcholine and executive functions in healthy, older adults. Front. Aging Neurosci. 8, 226 (2016).
Google Scholar
Gómez-Pinilla, F. Brain foods: the effects of nutrients on brain function. Nat. Rev. Neurosci. 9, 568–578 (2008).
Google Scholar
Bowman, G., Shannon, J., Ho, E., Traber, M. & Frei, B. Reliability and validity of food frequency questionnaire and nutrient biomarkers in elders with and without mild cognitive impairment. Alzheimer Dis. Assoc. Disord. 25, 49–57 (2011).
Google Scholar
Fraser, G., Jaceldo-Siegl, K., Henning, S., Fan, J. & Knutsen, S. Biomarkers of dietary intake are correlated with corresponding measures from repeated dietary recalls and food-frequency questionnaires in the adventist health study-2. J. Nutr. 146, 586–594 (2016).
Google Scholar
Folstein, M., Folstein, S. & McHugh, P. Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198 (1975).
Google Scholar
Zhimin, X. & Howard, L. R. Analysis of Antioxidant‐Rich Phytochemicals (John Wiley & Sons Ltd, 2012).
Folch, J., Lees, M. & Stanley, G. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957).
Google Scholar
Babson, A. The Cirrus Immulite automated immunoassay system. J. Clin. Immunoassay 14, 83–88 (1991).
Hart, G., Furniss, J., Laurie, D. & Durham, S. Measurement of vitamin D status: Background, clinical use, and methodologies. Clin Lab 52, 335–343 (2006).
Google Scholar
Van Dijk, K., Hedden, T., Venkataraman, A., Evans, K. & Lazar, S. Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J. Neurophysiol. 103, 297–321 (2010).
Google Scholar
Smith, S. Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–155 (2002).
Google Scholar
Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 (2001).
Google Scholar
Jenkinson, M., Beckmann, C., Behrens, T., Woolrich, M. & Smith, S. Fsl. Neuroimage 62, 782–790 (2012).
Google Scholar
Satterthwaite, T., Wolf, D. & Loughead, J. Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. Neuroimage 60, 623–632 (2012).
Google Scholar
Reuter, M., Rosas, H. D. & Fischl, B. Highly accurate inverse consistent registration: a robust approach. Neuroimage 53, 1181–1196 (2010).
Google Scholar
Smith, S., Jenkinson, M., Woolrich, M., Beckmann, C. & Behrens, T. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004).
Google Scholar
Behrens, T. E. et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50, 1077–1088 (2003).
Google Scholar
Behrens, T., Berg, H., Jbabdi, S., Rushworth, M. & Woolrich, M. Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34, 144–155 (2007).
Google Scholar
Smith, S., Jenkinson, M., Johansen-Berg, H., Rueckert, D. & Nichols, T. Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage 31, 1487–1505 (2006).
Google Scholar
Oishi, K., Zilles, K., Amunts, K., Faria, A. & Jiang, H. Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter. Neuroimage 43, 447–457 (2008).
Google Scholar
Muldoon, S., Bridgeford, E. & Bassett, D. Small-world propensity and weighted brain networks. Sci. Rep. 6, 22057 (2016).
Google Scholar
Yeo, B., Krienen, F. & Sepulcre, J. The organization of the human cerebral cortex is estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).
Google Scholar
Craddock, R., James, G., Holtzheimer, P., Hu, X. & Mayberg, H. A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33, 1914–1928 (2012).
Google Scholar
Ree, M. Correlation and regression: applications for industrial organizational psychology and management. Organ. Res. Methods 5, 200–201 (2002).
Google Scholar
Fox, M., Zhang, D., Snyder, A. & Raichle, M. The global signal and observed anticorrelated resting state brain networks. J. Neurophysiol. 101, 3270–3283 (2009).
Google Scholar
Murphy, K., Birn, R., Handwerker, D., Jones, T. & Bandettini, P. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?. Neuroimage 44, 893–905 (2009).
Google Scholar
Paul, E., Larsen, R. & Barbey, A. Dissociable brain biomarkers of fluid intelligence. NeuroImage 137, 201–211 (2016).
Google Scholar
Fischl, B. FreeSurfer. NeuroImage 62, 774–781 (2012).
Google Scholar
Wechsler, D. Wechsler Abbreviated Scale of Intelligence (Psychological Corporation, 1999).
Delis, D. C., Kaplan, E. & Kramer, J. H. Delis-Kaplan Executive Function System (D–KEFS) (The Psychological Corporation, San Antonio, 2001).
Wechsler, D. WMS-IV: Wechsler Memory Scale-fourth Edition (Pearson, San Antonio, 2009).
Siedlecki, K., Honig, L. & Stern, Y. Exploring the structure of a neuropsychological battery across healthy elders and those with questionable dementia and Alzheimer’s disease. Neuropsychology 22, 400–411 (2009).
Google Scholar
Jurca, R., Jackson, A., LaMonte, M., Morrow, J. J. & Blair, S. Assessing cardiorespiratory fitness without performing exercise testing. Am. J. Prev. Med. 29, 185–193 (2005).
Google Scholar
CoreTeam, R Studio: Integrated Development Environment for R (RStudio, PBC, Boston, 2022).
Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2020).
Salvatore, M. rcompanion: Functions to Support Extension Education Program Evaluation, R package version 2.3.25, (2020).
