Mendis, S., Davis, S. & Norrving, B. Organizational update: The world health organization global status report on noncommunicable diseases 2014; one more landmark step in the combat against stroke and vascular disease. Stroke 46, e121–e122. https://doi.org/10.1161/strokeaha.115.008097 (2015).
Google Scholar
Navickas, R., Petric, V. K., Feigl, A. B. & Seychell, M. Multimorbidity: What do we know? What should we do? J. Comorb. 6, 4–11. https://doi.org/10.15256/joc.2016.6.72 (2016).
Google Scholar
Prados-Torres, A., Calderón-Larrañaga, A., Hancco-Saavedra, J., Poblador-Plou, B. & van den Akker, M. Multimorbidity patterns: A systematic review. J. Clin. Epidemiol. 67, 254–266. https://doi.org/10.1016/j.jclinepi.2013.09.021 (2014).
Google Scholar
Sattar, N., Gill, J. M. R. & Alazawi, W. Improving prevention strategies for cardiometabolic disease. Nat. Med. 26, 320–325. https://doi.org/10.1038/s41591-020-0786-7 (2020).
Google Scholar
Leon, B. M. & Maddox, T. M. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J. Diabetes 6, 1246–1258. https://doi.org/10.4239/wjd.v6.i13.1246 (2015).
Google Scholar
Di Angelantonio, E. et al. Association of cardiometabolic multimorbidity with mortality. JAMA 314, 52–60. https://doi.org/10.1001/jama.2015.7008 (2015).
Google Scholar
Basto-Abreu, A. et al. Multimorbidity matters in low and middle-income countries. J. Multimorb. Comorb. 12, 26335565221106070. https://doi.org/10.1177/26335565221106074 (2022).
Google Scholar
Zheng, Y. et al. Association between composite lifestyle factors and cardiometabolic multimorbidity in Chongqing, China: A cross-sectional exploratory study in people over 45 years and older. Front. Public Health 11, 1118628. https://doi.org/10.3389/fpubh.2023.1118628 (2023).
Google Scholar
Sakakibara, B. M., Obembe, A. O. & Eng, J. J. The prevalence of cardiometabolic multimorbidity and its association with physical activity, diet, and stress in Canada: Evidence from a population-based cross-sectional study. BMC Public Health 19, 1361. https://doi.org/10.1186/s12889-019-7682-4 (2019).
Google Scholar
Singh-Manoux, A. et al. Clinical, socioeconomic, and behavioural factors at age 50 years and risk of cardiometabolic multimorbidity and mortality: A cohort study. PLoS Med. 15, e1002571. https://doi.org/10.1371/journal.pmed.1002571 (2018).
Google Scholar
Han, Y. et al. Lifestyle, cardiometabolic disease, and multimorbidity in a prospective Chinese study. Eur. Heart J. 42, 3374–3384. https://doi.org/10.1093/eurheartj/ehab413 (2021).
Google Scholar
Bendich, A. & Olson, J. A. Biological actions of carotenoids. FASEB J. 3, 1927–1932 (1989).
Google Scholar
Zhang, Y. et al. Inverse association between dietary vitamin A intake and new-onset hypertension. Clin. Nutr. 40, 2868–2875. https://doi.org/10.1016/j.clnu.2021.04.004 (2021).
Google Scholar
Su, L. et al. Dietary total vitamin A, β-carotene, and retinol intake and the risk of diabetes in chinese adults with plant-based diets. J. Clin. Endocrinol. Metab. 107, e4106–e4114. https://doi.org/10.1210/clinem/dgac439 (2022).
Google Scholar
Farashi, S., Shahidi, S., Sarihi, A. & Zarei, M. Association of vitamin A and its organic compounds with stroke—A systematic review and meta-analysis. Nutr. Neurosci. 26, 960–974. https://doi.org/10.1080/1028415x.2022.2111746 (2023).
Google Scholar
Zhang, B., Zhai, F. Y., Du, S. F. & Popkin, B. M. The China Health and Nutrition Survey, 1989–2011. Obes. Rev. 15(Suppl 1), 2–7. https://doi.org/10.1111/obr.12119 (2014).
Google Scholar
Popkin, B. M., Du, S., Zhai, F. & Zhang, B. Cohort profile: The China Health and Nutrition Survey—Monitoring and understanding socio-economic and health change in China, 1989–2011. Int. J. Epidemiol. 39, 1435–1440. https://doi.org/10.1093/ije/dyp322 (2010).
Google Scholar
Zhou, C. et al. Inverse association between variety of proteins with appropriate quantity from different food sources and new-onset hypertension. Hypertension 79, 1017–1027. https://doi.org/10.1161/hypertensionaha.121.18222 (2022).
Google Scholar
Li, J. et al. Famine and trajectories of body mass index, waist circumference, and blood pressure in two generations: Results from the CHNS from 1993–2015. Hypertension 79, 518–531. https://doi.org/10.1161/hypertensionaha.121.18022 (2022).
Google Scholar
Zhai, F. Y. et al. Dynamics of the Chinese diet and the role of urbanicity, 1991–2011. Obes. Rev. 15(Suppl 1), 16–26. https://doi.org/10.1111/obr.12124 (2014).
Google Scholar
Xue, H. et al. Relative validity of a 2-day 24-hour dietary recall compared with a 2-day weighed dietary record among adults in South China. Nutr. Diet 74, 298–307. https://doi.org/10.1111/1747-0080.12315 (2017).
Google Scholar
Zheng, J. et al. Diet quality and mortality among Chinese adults: Findings from the China health and nutrition survey. Nutrients 16, 94. https://doi.org/10.3390/nu16010094 (2023).
Google Scholar
Yang, Y., Wang, G. & Pan, X. (Peking University Medical Press, 2005).
Yang, Y., Wang, G. & Pan, X. China food composition. Peking Univ. Med. Press Beijing 42, 795–799 (2009).
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl 1), S62–S69. https://doi.org/10.2337/dc10-S062 (2010).
Google Scholar
van Buuren, S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat. Methods Med. Res. 16, 219–242. https://doi.org/10.1177/0962280206074463 (2007).
Google Scholar
Cheng, X., Ma, T., Ouyang, F., Zhang, G. & Bai, Y. Trends in the prevalence of cardiometabolic multimorbidity in the United States, 1999–2018. Int. J. Environ. Res. Public Health 19, 726. https://doi.org/10.3390/ijerph19084726 (2022).
Google Scholar
McCarron, D. A., Morris, C. D., Henry, H. J. & Stanton, J. L. Blood pressure and nutrient intake in the United States. Science 224, 1392–1398. https://doi.org/10.1126/science.6729459 (1984).
Google Scholar
Li, Z., Chen, J. & Zhang, D. Association between dietary carotenoid intakes and hypertension in adults: National Health and Nutrition Examination Survey 2007–2014. J. Hypertens. 37, 2371–2379. https://doi.org/10.1097/hjh.0000000000002200 (2019).
Google Scholar
Woo, J., Ho, S. C., Donnan, S. & Swaminathan, R. Nutritional correlates of blood pressure in elderly Chinese. J. Hum. Hypertens. 1, 287–291 (1988).
Google Scholar
Trasino, S. E., Benoit, Y. D. & Gudas, L. J. Vitamin A deficiency causes hyperglycemia and loss of pancreatic β-cell mass. J. Biol. Chem. 290, 1456–1473. https://doi.org/10.1074/jbc.M114.616763 (2015).
Google Scholar
Osganian, S. K. et al. Dietary carotenoids and risk of coronary artery disease in women. Am. J. Clin. Nutr. 77, 1390–1399. https://doi.org/10.1093/ajcn/77.6.1390 (2003).
Google Scholar
Klipstein-Grobusch, K. et al. Dietary antioxidants and risk of myocardial infarction in the elderly: The Rotterdam Study. Am. J. Clin. Nutr. 69, 261–266. https://doi.org/10.1093/ajcn/69.2.261 (1999).
Google Scholar
Esterbauer, H. et al. The role of vitamin E and carotenoids in preventing oxidation of low density lipoproteins. Ann. N. Y. Acad. Sci. 570, 254–267. https://doi.org/10.1111/j.1749-6632.1989.tb14925.x (1989).
Google Scholar
Lee, C. H. et al. Dietary intake of anti-oxidant vitamins A, C, and E is inversely associated with adverse cardiovascular outcomes in Chinese—A 22-years population-based prospective study. Nutrients 10, 664. https://doi.org/10.3390/nu10111664 (2018).
Google Scholar
Zhang, M. J. et al. A nutrient-wide association study for the risk of cardiovascular disease in the China Health and Nutrition Survey (CHNS) and the National Health and Nutrition Examination Survey (NHANES). Food Funct. 14, 8597–8603. https://doi.org/10.1039/d3fo01758c (2023).
Google Scholar
Donhowe, E. G. & Kong, F. Beta-carotene: Digestion, microencapsulation, and in vitro bioavailability. Food Bioprocess Technol. 7, 338–354 (2014).
Google Scholar
Smith-Warner, S. A. et al. Increasing vegetable and fruit intake: Randomized intervention and monitoring in an at-risk population. Cancer Epidemiol. Biomark. Prev. 9, 307–317 (2000).
Google Scholar
Carlsen, M. H. et al. Relative validity of fruit and vegetable intake estimated from an FFQ, using carotenoid and flavonoid biomarkers and the method of triads. Br. J. Nutr. 105, 1530–1538. https://doi.org/10.1017/s0007114510005246 (2011).
Google Scholar
Milani, A., Basirnejad, M., Shahbazi, S. & Bolhassani, A. Carotenoids: Biochemistry, pharmacology and treatment. Br. J. Pharmacol. 174, 1290–1324. https://doi.org/10.1111/bph.13625 (2017).
Google Scholar
Gammone, M. A., Riccioni, G. & D’Orazio, N. Carotenoids: Potential allies of cardiovascular health? Food Nutr. Res. 59, 26762. https://doi.org/10.3402/fnr.v59.26762 (2015).
Google Scholar
Aune, D. et al. Dietary intake and blood concentrations of antioxidants and the risk of cardiovascular disease, total cancer, and all-cause mortality: A systematic review and dose-response meta-analysis of prospective studies. Am. J. Clin. Nutr. 108, 1069–1091. https://doi.org/10.1093/ajcn/nqy097 (2018).
Google Scholar
Jiang, Y. W. et al. Dietary intake and circulating concentrations of carotenoids and risk of type 2 diabetes: A dose-response meta-analysis of prospective observational studies. Adv. Nutr. 12, 1723–1733. https://doi.org/10.1093/advances/nmab048 (2021).
Google Scholar
Zhu, X. et al. Associations of serum carotenoids with risk of all-cause and cardiovascular mortality in hypertensive adults. J. Am. Heart Assoc. 12, e027568. https://doi.org/10.1161/jaha.122.027568 (2023).
Google Scholar
Ribeiro, D., Freitas, M., Silva, A. M. S., Carvalho, F. & Fernandes, E. Antioxidant and pro-oxidant activities of carotenoids and their oxidation products. Food Chem. Toxicol. 120, 681–699. https://doi.org/10.1016/j.fct.2018.07.060 (2018).
Google Scholar
do Nascimento, T. C. et al. Microalgae carotenoids intake: Influence on cholesterol levels, lipid peroxidation and antioxidant enzymes. Food Res. Int. 128, 108770. https://doi.org/10.1016/j.foodres.2019.108770 (2020).
Google Scholar
Blomhoff, H. K. Vitamin A regulates proliferation and apoptosis of human T- and B-cells. Biochem. Soc. Trans. 32, 982–984. https://doi.org/10.1042/bst0320982 (2004).
Google Scholar
Pirayesh Islamian, J. & Mehrali, H. Lycopene as a carotenoid provides radioprotectant and antioxidant effects by quenching radiation-induced free radical singlet oxygen: An overview. Cell J. 16, 386–391. https://doi.org/10.22074/cellj.2015.485 (2015).
Google Scholar
Yu, Y. et al. Plasma retinol and the risk of first stroke in hypertensive adults: A nested case-control study. Am. J. Clin. Nutr. 109, 449–456. https://doi.org/10.1093/ajcn/nqy320 (2019).
Google Scholar
Gey, K. F. et al. Low plasma retinol predicts coronary events in healthy middle-aged men: The PRIME Study. Atherosclerosis 208, 270–274. https://doi.org/10.1016/j.atherosclerosis.2009.07.018 (2010).
Google Scholar
Bobbert, T. et al. Relation between retinol, retinol-binding protein 4, transthyretin and carotid intima media thickness. Atherosclerosis 213, 549–551. https://doi.org/10.1016/j.atherosclerosis.2010.07.063 (2010).
Google Scholar
Min, K. B. & Min, J. Y. Relation of serum vitamin A levels to all-cause and cause-specific mortality among older adults in the NHANES III population. Nutr. Metab. Cardiovasc. Dis. 24, 1197–1203. https://doi.org/10.1016/j.numecd.2014.06.004 (2014).
Google Scholar
Appel, L. J. et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 336, 1117–1124. https://doi.org/10.1056/nejm199704173361601 (1997).
Google Scholar
Qiu, Z. et al. Associations of serum carotenoids with risk of cardiovascular mortality among individuals with type 2 diabetes: Results from NHANES. Diabetes Care 45, 1453–1461. https://doi.org/10.2337/dc21-2371 (2022).
Google Scholar
Yang, J., Zhang, Y., Na, X. & Zhao, A. β-Carotene supplementation and risk of cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials. Nutrients 14, 1284. https://doi.org/10.3390/nu14061284 (2022).
Google Scholar
Truscott, T. G. Beta-carotene and disease: A suggested pro-oxidant and anti-oxidant mechanism and speculations concerning its role in cigarette smoking. J. Photochem. Photobiol. B 35, 233–235. https://doi.org/10.1016/s1011-1344(96)07299-5 (1996).
Google Scholar
Burton, G. W. & Ingold, K. U. Beta-Carotene: An unusual type of lipid antioxidant. Science 224, 569–573. https://doi.org/10.1126/science.6710156 (1984).
Google Scholar
Palozza, P. Prooxidant actions of carotenoids in biologic systems. Nutr. Rev. 56, 257–265. https://doi.org/10.1111/j.1753-4887.1998.tb01762.x (1998).
Google Scholar
Nutrition, C. (Science Press, 2013).
Trumbo, P., Yates, A. A., Schlicker, S. & Poos, M. Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J. Am. Diet Assoc. 101, 294–301. https://doi.org/10.1016/s0002-8223(01)00078-5 (2001).
Google Scholar
Jenab, M. et al. Dietary intakes of retinol, beta-carotene, vitamin D and vitamin E in the European Prospective Investigation into Cancer and Nutrition cohort. Eur. J. Clin. Nutr. 63(Suppl 4), S150–S178. https://doi.org/10.1038/ejcn.2009.79 (2009).
Google Scholar
Borel, P. et al. β-Carotene bioavailability and conversion efficiency are significantly affected by sex in rats: First observation suggesting a possible hormetic regulation of vitamin A metabolism in female rats. Mol. Nutr. Food Res. 65, e2100650. https://doi.org/10.1002/mnfr.202100650 (2021).
Google Scholar
Ribeiro, M. P., Santos, A. E. & Custódio, J. B. Interplay between estrogen and retinoid signaling in breast cancer—Current and future perspectives. Cancer Lett. 353, 17–24. https://doi.org/10.1016/j.canlet.2014.07.009 (2014).
Google Scholar
Booth, V. H. The influence of sex on the storage of vitamin A. Biochem. J. 47, 43 (1950).
Blaner, W. S. et al. Vitamin A absorption, storage and mobilization. Subcell. Biochem. 81, 95–125. https://doi.org/10.1007/978-94-024-0945-1_4 (2016).
Google Scholar
Sui, X., Kiser, P. D., Lintig, J. & Palczewski, K. Structural basis of carotenoid cleavage: From bacteria to mammals. Arch. Biochem. Biophys. 539, 203–213. https://doi.org/10.1016/j.abb.2013.06.012 (2013).
Google Scholar
Quann, E. E., Fulgoni, V. L. 3rd. & Auestad, N. Consuming the daily recommended amounts of dairy products would reduce the prevalence of inadequate micronutrient intakes in the United States: Diet modeling study based on NHANES 2007–2010. Nutr. J. 14, 90. https://doi.org/10.1186/s12937-015-0057-5 (2015).
Google Scholar
Zhang, D. et al. Multimorbidity of cardiometabolic diseases: Prevalence and risk for mortality from one million Chinese adults in a longitudinal cohort study. BMJ Open 9, e024476. https://doi.org/10.1136/bmjopen-2018-024476 (2019).
Google Scholar
Gong, W. et al. Nutrient supplement use among the Chinese population: A cross-sectional study of the 2010–2012 China nutrition and health surveillance. Nutrients 10, 733. https://doi.org/10.3390/nu10111733 (2018).
Google Scholar