Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).
Google Scholar
Recanati, F., Marveggio, D. & Dotelli, G. From beans to bar: a life cycle assessment towards sustainable chocolate supply chain. Sci. Total Environ. 613, 1013–1023 (2018).
Google Scholar
Abdulai, I. et al. Characterization of cocoa production, income diversification and shade tree management along a climate gradient in Ghana. PLoS ONE 13, e0195777 (2018).
Google Scholar
Mellor, D. D., Sathyapalan, T., Kilpatrick, E. S. & Atkin, S. L. Diabetes and chocolate: friend or foe?. J. Agric. Food Chem. 63, 9910–9918 (2015).
Google Scholar
Hashem, K. M., He, F. J., Alderton, S. A. & MacGregor, G. A. Cross-sectional survey of the amount of sugar and energy in chocolate confectionery sold in the UK in 1992 and 2017. Nutrients 11, 1798 (2019).
Google Scholar
Drewnowski, A. & Specter, S. E. Poverty and obesity: the role of energy density and energy costs. Am. J. Clin. Nutr. 79, 6–16 (2004).
Google Scholar
Mendoza, J. A., Drewnowski, A. & Christakis, D. A. Dietary energy density is associated with obesity and the metabolic syndrome in US adults. Diabetes Care 30, 974–979 (2007).
Google Scholar
Rocchini, A. P. Childhood obesity and a diabetes epidemic. New Engl. J. Med. 346, 854–855 (2002).
Google Scholar
Mozaffarian, D., Appel, L. J. & Van Horn, L. Components of a cardioprotective diet: new insights. Circulation 123, 2870–2891 (2011).
Google Scholar
Mishra, K. et al. The rheology and foamability of crystal-melt suspensions composed of triacylglycerols. Soft Matter 18, 1183–1193 (2022).
Google Scholar
Mishra, K. et al. Entrance flow of unfoamed and foamed Herschel–Bulkley fluids. J. Rheol. 65, 1155–1168 (2021).
Google Scholar
Faccinetto-Beltrán, P. et al. Physicochemical properties and sensory acceptability of a next-generation functional chocolate added with omega-3 polyunsaturated fatty acids and probiotics. Foods 10, 333 (2021).
Google Scholar
Espert, M., Hernández, M. J., Sanz, T. & Salvador, A. Reduction of saturated fat in chocolate by using sunflower oil-hydroxypropyl methylcellulose based oleogels. Food Hydrocoll. 120, 106917 (2021).
Google Scholar
Mishra, K., Dufour, D. & Windhab, E. J. Yield stress dependent foaming of edible crystal-melt suspensions. Cryst. Growth Des. 20, 1292–1301 (2020).
Google Scholar
Amfo, B. & Ali, E. B. Climate change coping and adaptation strategies: how do cocoa farmers in Ghana diversify farm income? For. Policy Econ. 119, 102265 (2020).
Google Scholar
Franzen, M. & Mulder, M. B. Ecological, economic and social perspectives on cocoa production worldwide. Biodivers. Conserv. 16, 3835–3849 (2007).
Google Scholar
Pérez-Neira, D., Schneider, M. & Armengot, L. Crop-diversification and organic management increase the energy efficiency of cacao plantations. Agric. Syst. 177, 102711 (2020).
Google Scholar
Avadı́, A. Environmental assessment of the Ecuadorian cocoa value chain with statistics-based LCA. Int. J. Life Cycle Assess. 28, 1495–1515 (2023).
Google Scholar
Bianchi, F. R., Moreschi, L., Gallo, M., Vesce, E. & Del Borghi, A. Environmental analysis along the supply chain of dark, milk and white chocolate: a life cycle comparison. Int. J. Life Cycle Assess. 26, 807–821 (2021).
Google Scholar
Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).
Google Scholar
Campos-Vega, R., Nieto-Figueroa, K. H. & Oomah, B. D. Cocoa (Theobroma cacao L.) pod husk: renewable source of bioactive compounds. Trends Food Sci. Technol. 81, 172–184 (2018).
Google Scholar
Vriesmann, L. C., Amboni, R. Dd. M. C. & de Oliveira Petkowicz, C. L. Cacao pod husks (Theobroma cacao L.): composition and hot-water-soluble pectins. Ind. Crops Prod. 34, 1173–1181 (2011).
Google Scholar
Guignard, C. Cocoa bean production, sun-dried, GH, cocoa bean. ecoinvent database v.3.9.1 (2023); https://ecoquery.ecoinvent.org/3.10/cutoff/dataset/15041/documentation
Adomako, D., Dwupanyim, A. O. & Tettey, J. P. The sugar content of cocoa sweatings and the effect of pressing the sweatings prior to fermentation on bean quality. Ghana J. Biochem. Biotechnol. Mol. Biol. 1, 88–93 (1991).
Oddoye, E. O. K., Agyente-Badu, C. K. & Gyedu-Akoto, E. in Chocolate in Health and Nutrition (eds Watson, R. R. et al.) 23–37 (Springer, 2013).
Lu, F. et al. Valorisation strategies for cocoa pod husk and its fractions. Curr. Opin. Green Sustain. Chem. 14, 80–88 (2018).
Google Scholar
Jacobi, J. et al. Carbon stocks, tree diversity, and the role of organic certification in different cocoa production systems in Alto Beni, Bolivia. Agrofor. Syst. 88, 1117–1132 (2014).
Google Scholar
McGill, J. & Hartel, R. W. in Water Activity in Foods: Fundamentals and Applications, 2nd edn (eds Barbosa-Cánovas, G. V. et al.) 483–500 (Wiley, 2020).
Sobamiwa, O. & Longe, O. G. Utilization of cocoa-pod pericarp fractions in broiler chick diets. Anim. Feed Sci. Technol. 47, 237–244 (1994).
Google Scholar
Vriesmann, L. C. & de Oliveira Petkowicz, C. L. Cacao pod husks as a source of low-methoxyl, highly acetylated pectins able to gel in acidic media. Int. J. Biol. Macromol. 101, 146–152 (2017).
Google Scholar
Evageliou, V., Richardson, R. K., & Morris, E. R. Effect of pH, sugar type and thermal annealing on high-methoxy pectin gels. Carbohydr. Polym. 42, 245–259 (2000).
Tsoga, A., Richardson, R. K. & Morris, E. R. Role of cosolutes in gelation of high-methoxy pectin. Part 1. Comparison of sugars and polyols. Food Hydrocoll. 18, 907–919 (2004).
Google Scholar
Sengkhamparn, N. et al. Physicochemical properties of pectins from okra (Abelmoschus esculentus (L.) Moench). Food Hydrocoll. 24, 35–41 (2010).
Google Scholar
Huang, S.-T., Yang, C.-H., Lin, P.-J., Su, C.-Y. & Hua, C.-C. Multiscale structural and rheological features of colloidal low-methoxyl pectin solutions and calcium-induced sol–gel transition. Phys. Chem. Chem. Phys. 23, 19269–19279 (2021).
Google Scholar
Tsami, E., Vagenas, G. K. & Marinos-Kouris, D. Moisture sorption isotherms of pectins. J. Food Process. Preserv. 16, 151–161 (1992).
Google Scholar
Panchev, I. N., Slavov, A., Nikolova, K. & Kovacheva, D. On the water-sorption properties of pectin. Food Hydrocoll. 24, 763–769 (2010).
Google Scholar
Windhab, E. J. What makes for smooth, creamy chocolate? Phys. Today 59, 82 (2006).
Google Scholar
Burkard, J. et al. Inkjet-based surface structuring: amplifying sweetness perception through additive manufacturing in foods. NPJ Sci. Food 7, 42 (2023).
Google Scholar
Mishra, K. et al. Controlling lipid crystallization across multiple length scales by directed shear flow. J. Colloid Interface Sci. 630, 731–741 (2023).
Google Scholar
Mishra, K. et al. Rheology of cocoa butter. J. Food Eng. 305, 110598 (2021).
Google Scholar
Koos, E. Capillary suspensions: particle networks formed through the capillary force. Curr. Opin. Colloid Interface Sci. 19, 575–584 (2014).
Google Scholar
Hoffmann, S., Koos, E. & Willenbacher, N. Using capillary bridges to tune stability and flow behavior of food suspensions. Food Hydrocoll. 40, 44–52 (2014).
Google Scholar
Guinard, J.-X. & Mazzucchelli, R. Effects of sugar and fat on the sensory properties of milk chocolate: descriptive analysis and instrumental measurements. J. Sci. Food Agric. 79, 1331–1339 (1999).
Google Scholar
Koriyama, T., Wongso, S., Watanabe, K. & Abe, H. Fatty acid compositions of oil species affect the 5 basic taste perceptions. J. Food Sci. 67, 868–873 (2002).
Google Scholar
Pettipher, G. L. Analysis of cocoa pulp and the formulation of a standardised artificial cocoa pulp medium. J. Sci. Food Agric. 37, 297–309 (1986).
Google Scholar
Huijbregts, M. A. J. et al. ReCiPe 2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. LCA 22, 138–147 (2017).
Grob, L., Ott, E., Schnell, S. & Windhab, E. J. Characterization of endocarp powder derived from cocoa pod. J. Food Eng. 305, 110591 (2021).
Google Scholar
Beigi, M. Energy efficiency and moisture diffusivity of apple slices during convective drying. Food Sci. Technol. 36, 145–150 (2016).
Google Scholar
Stelson, K. A. Saving the world’s energy with fluid power. In Proc. 8th JFPS International Symposium on Fluid Power 1–7 (The Japan Fluid Power System Society, Okinawa, 2011).
Piccinno, F., Hischier, R., Seeger, S. & Som, C. From laboratory to industrial scale: a scale-up framework for chemical processes in life cycle assessment studies. J. Clean. Prod. 135, 1085–1097 (2016).
Google Scholar
EcoTransIT World Emission calculator for greenhouse gases and exhaust emissions (Ingenieurgesellschaft für Verkehrs-und Eisenbahnwesen mbH (IVE mbH), 2023); https://www.ecotransit.org/de/emissionsrechner/
Bello-Bravo, J., Lovett, P. N. & Pittendrigh, B. R. The evolution of shea butter’s ‘paradox of paradoxa’ and the potential opportunity for information and communication technology (ICT) to improve quality, market access and women’s livelihoods across rural Africa. Sustainability 7, 5752–5772 (2015).
Google Scholar
Boakye-Yiadom, K. A., Duca, D., Foppa Pedretti, E. & Ilari, A. Environmental performance of chocolate produced in Ghana using life cycle assessment. Sustainability 13, 6155 (2021).
Google Scholar
