American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th edn. Washington, DC: American Psychiatric Association; 2013. 9780890425596.
Van der Kolk BA. The body keeps the score: brain, mind, and body in the healing of trauma. Penguin Books; 2015.
Yehuda R, Hoge CW, McFarlane AC, Vermetten E, Lanius RA, Nievergelt CM, et al. Posttraumatic stress disorder. Nat Rev. 2015. https://doi.org/10.1038/nrdo.2015.57
Google Scholar
Olff M, Vries GDE, Gu Y, Assies J, Gersons BPR. Changes in cortisol and DHEA plasma levels after psychotherapy for PTSD. Psychoneuroendocrinology. 2007;32:619–26. https://doi.org/10.1016/j.psyneuen.2007.04.001
Google Scholar
Levy-gigi E, Szabó C, Kelemen O, Kéri S. Association among clinical response, hippocampal volume, and FKBP5 gene expression in individuals with posttraumatic stress disorder receiving cognitive behavioral therapy. Biol Psychiatry. 2013;74:793–800. https://doi.org/10.1016/j.biopsych.2013.05.017
Google Scholar
Bradley R, Greene J, Russ E, Durta L, Western DT. Am J Psychiatry 2005;11:189–98. https://doi.org/10.1177/153476560501100304
Google Scholar
Sullivan DR, Marx B, Chen MS, Depue BE, Hayes SM, Hayes JP. Behavioral and neural correlates of memory suppression in PTSD. J Psychiatr Res. 2019;112:30–37. https://doi.org/10.1016/j.jpsychires.2019.02.015
Google Scholar
Elzinga BM, Bremner JD. Are the neural substrates of memory the final common pathway in post traumatic stress disorder (PTSD). J Psychiatr Res. 2019;112:30–37. https://doi.org/10.1016/j.jpsychires.2019.02.015
Google Scholar
Malaktaris AL, Lynn SJ. The phenomenology and correlates of flashbacks in individuals with posttraumatic stress symptoms. Clin Psychological Sci. 2019;7:249–64. https://doi.org/10.1177/2167702618805081
Google Scholar
Ehlers A, Clark DM. A cognitive model of posttraumatic stress disorder. Behav Res Ther. 2000;38:319–45. https://doi.org/10.1016/S0005-7967(99)00123-0
Google Scholar
Rubin DC, Boals A, Berntsen D. Memory in posttraumatic stress disorder: properties of voluntary and involuntary, traumatic and nontraumatic autobiographical memories in people with and without posttraumatic stress disorder symptoms. J Exp Psychol: Gen. 2008;137:591–614. https://doi.org/10.1037/a0013165
Google Scholar
Pitman RK, Rasmusson AM, Koenen KC, Shin LM, Orr SP, Gilbertson MW, et al. Biological studies of post-traumatic stress disorder. Nat Rev Neurosci. 2012;13:769–87. https://doi.org/10.1038/nrn3339
Google Scholar
Mcfarlane AC. Post-traumatic stress disorder is a systemic illness, not a mental disorder: is Cartesian dualism dead? Med J Australia. 2017:248–9. https://doi.org/10.5694/mja17.00048
Terpou BA, Harricharan S, McKinnon MC, Frewen P, Jetly R, Lanius RA. The effects of trauma on brain and body: a unifying role for the midbrain periaqueductal gray. J Neurosci Res. 2019;97:1110–40. https://doi.org/10.1002/jnr.24447
Google Scholar
Unschuld, PU. Medicine in China: a history of ideas. Vol. 13. Univ. of California Press; 2010.
Black, DW, Grant JE. DSM-5® Guidebook: the essential companion to the diagnostic and statistical manual of mental disorders. American Psychiatric Pub; 2014.
Dudai Y. The neurobiology of consolidations, or, how stable is the engram? Annu Rev Psychol. 2004;55:51–86. https://doi.org/10.1146/annurev.psych.55.090902.142050
Google Scholar
Alberini CM. Mechanisms of memory stabilization: Are consolidation and reconsolidation similar or distinct processes? Trends Neurosci. 2005;28:51–56. https://doi.org/10.1016/j.tins.2004.11.001
Google Scholar
Dudai Y. Consolidation: fragility on the road to the engram. NeuroImage 1996;17:367–70.
Google Scholar
McGaugh JL. Memory – A century of consolidation. Science. 2000;287:248–51. https://doi.org/10.1126/science.287.5451.248
Google Scholar
Stickgold R. Sleep-dependent memory consolidation. Nat Rev. 2005;437. https://doi.org/10.1038/nature04286
Ben-Yakov A, Eshel N, Dudai Y. Hippocampal immediate poststimulus activity in the encoding of consecutive naturalistic episodes. J Exp Psychol: Gen. 2013;142:1255–63. https://doi.org/10.1037/a0033558
Google Scholar
Bramham CR. Local protein synthesis, actin dynamics, and LTP consolidation. Curr Opin Neurobiol. 2008:524–31. https://doi.org/10.1016/j.conb.2008.09.013
Alberini CM. Transcription factors in long-term memory and synaptic plasticity. Physiological Rev. 2009;89:121–45. https://doi.org/10.1152/physrev.00017.2008
Google Scholar
Schafe GE, Ledoux JE. Memory consolidation of auditory pavlovian fear conditioning requires protein synthesis and protein kinase A in the amygdala. J Neurosci. 2000;20:1–5.
Google Scholar
Dudai Y. The restless engram: consolidations never end. Annu Rev Neurosci. 2012;35:227–47. https://doi.org/10.1146/annurev-neuro-062111-150500
Google Scholar
Cohen H, Kaplan Z, Matar MA, Loewenthal U, Kozlovsky N, Zohar J. Traumatic memory consolidation and attenuates posttraumatic stress response in rats. Biol Psychiatry. 2006:767–76. https://doi.org/10.1016/j.biopsych.2006.03.013
Dudai Y, Eisenberg M, Oratoria I, The AD. Rites of passage of the engram: reconsolidation and the lingering consolidation hypothesis. Neuron 2004;44:93–100.
Google Scholar
Schiller D, Monfils MH, Raio CM, Johnson DC, Ledoux JE, Phelps EA. Preventing the return of fear in humans using reconsolidation update mechanisms. Nature. 2010;463:49–53. https://doi.org/10.1038/nature08637
Google Scholar
Alberini CM, Ledoux JE. Memory reconsolidation. Curr Biol. 2013;23:R746–R750. https://doi.org/10.1007/7854_2016_463
Google Scholar
Nader K, Schafe GE, Le Doux JE. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature. 2000;406. 35021052
Hernandez PJ, Abel T. The role of protein synthesis in memory consolidation: progress amid decades of debate. Neurobiol Learn Mem. 2008;89:293–311. https://doi.org/10.1016/j.nlm.2007.09.010
Google Scholar
Kida S. Reconsolidation/destabilization, extinction and forgetting of fear memory as therapeutic targets for PTSD. Psychopharmacology. 2019:49-57. https://doi.org/10.1007/s00213-018-5086-2.
Kaplan GB, Moore KA. Pharmacology, biochemistry and behavior the use of cognitive enhancers in animal models of fear extinction. Pharmacol, Biochem Behav. 2011;99:217–28. https://doi.org/10.1016/j.pbb.2011.01.009
Google Scholar
Elsey JWB, Van Ast VA, Kindt M. Human memory reconsolidation: a guiding framework and critical review of the evidence. Psychological Bull. 2018;144:797–848. https://doi.org/10.1037/bul0000152
Google Scholar
Payne P, Levine PA, Crane-Godreau MA. Somatic experiencing: using interoception and proprioception as core elements of trauma therapy. Front Psychol. 2015;6:1–18. https://doi.org/10.3389/fpsyg.2015.00093
Google Scholar
Wong YM. Commentary: differential cerebral response to somatosensory stimulation of an acupuncture point vs. two non-acupuncture points measured with EEG and fMRI. Front Hum Neurosci. 2016;10:1–17. https://doi.org/10.3389/fnhum.2016.00063
Google Scholar
Da Silva MAH, Dorsher PT. Neuroanatomic and clinical correspondences: acupuncture and vagus nerve stimulation. J Alternative Complementary Med. 2014;20:233–40. https://doi.org/10.1089/acm.2012.1022
Google Scholar
Wang G, Ayati MH, Zhang W. Meridian studies in China: a systematic review. J Acupunct Meridian Stud. 2010;3:1–9. https://doi.org/10.1016/S2005-2901(10)60001-5
Google Scholar
Kaptchuk TJ, Chen KJ, Song J. Recent clinical trials of acupuncture in the West: Responses from the practitioners. Chin J Integr Med. 2010;16:197–203. https://doi.org/10.1007/s11655-010-0197-x
Google Scholar
Kong J, Kaptchuk TJ, Polich G, Kirsch I, Vangel M, Zyloney C, et al. An fMRI study on the interaction and dissociation between expectation of pain relief and acupuncture treatment. NeuroImage. 2009;47:1066–76. https://doi.org/10.1016/j.neuroimage.2009.05.087
Google Scholar
Maeda Y, Kim H, Kettner N, Kim J, Cina S, Malatesta C, et al. Rewiring the primary somatosensory cortex in carpal tunnel syndrome with acupuncture. Brain. 2017;140:914–27. https://doi.org/10.1093/brain/awx015
Google Scholar
Tian J, editor. Multi-modality neuroimaging study on neurobiological mechanisms of acupuncture. 1st edn. Singapore: Springer Singapore; 2018.
Tracey KJ. The inflammatory reflex. Nature 2002;420:853 https://doi.org/10.1196/annals.1393.013.The
Google Scholar
Huang ST, Chen GY, Lo HM, Lin JG, Lee YSKC. Increase in the vagal modulation by acupuncture at neiguan point in the healthy subjects. Am J Chin Med. 2005;30:154–67. https://doi.org/10.1142/S0192415X0500276X
Google Scholar
Cho ZH, Hwang SC, Wong EK, Son YD, Kang CK, Park TS, et al. Neural substrates, experimental evidences and functional hypothesis of acupuncture mechanisms. Acta Neurologica Scandinavica. 2006;113:370–7. https://doi.org/10.1111/j.1600-0404.2006.00600.x
Google Scholar
Napadow V, Dhond RP, Kim J, LaCount L, Vangel M, Harris RE, et al. Brain encoding of acupuncture sensation—coupling on-line rating with fMRI. NeuroImage. 2009;47:1055–65. https://doi.org/10.1016/j.neuroimage.2009.05.079
Google Scholar
Dhond RP, Yeh C, Park K, Kettner N, Napadow V. Acupuncture modulates resting state connectivity in default and sensorimotor brain networks. Pain. 2008;136:407–18. https://doi.org/10.1016/j.pain.2008.01.011
Google Scholar
Koch S, van Zuiden M, Nawijn L, L. Frijling J, Veltman DJ, Olff M. Aberrant resting-state brain activity in posttraumatic stress disorder: a meta-analysis and systematic review. Depression Anxiety. 2016;605:592–605. https://doi.org/10.1002/da.22478
Google Scholar
Admon R, Lubin G, Stern O, Rosenberg K, Sela L, Ben-Ami H, et al. Human vulnerability to stress depends on amygdala’s predisposition and hippocampal plasticity. Proc Natl Acad Sci USA. 2009;106:14120–5. https://doi.org/10.1073/pnas.0903183106
Google Scholar
Badura-Brack A, McDermott TJ, Heinrichs-Graham E, Ryan TJ, Khanna MM, Pine DS, et al. Veterans with PTSD demonstrate amygdala hyperactivity while viewing threatening faces: A MEG study. Biol Psychol. 2018;132:228–32. https://doi.org/10.1016/j.biopsycho.2018.01.005
Google Scholar
Stidd DA, Vogelsang K, Krahl SE, Langevin J, Fellous J. Brain stimulation amygdala deep brain stimulation is superior to paroxetine treatment in a rat model of posttraumatic stress disorder. Brain Stimulation. 2013;6:837–44. https://doi.org/10.1016/j.brs.2013.05.008
Google Scholar
Kraus T, Hösl K, Kiess O, Schanze A, Kornhuber J, Forster C. BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation. J Neural Transm. 2007;114:1485–93. https://doi.org/10.1007/s00702-007-0755-z
Google Scholar
Koek RJ, Roach J, Athanasiou N, Philip NS. Neuromodulatory treatments for post-traumatic stress disorder (PTSD). Prog Neuro-Psychopharmacol Biol Psychiatry. 2019;92:148–60. https://doi.org/10.1016/j.pnpbp.2019.01.004
Google Scholar
Napadow V. When a white horse is a horse: embracing the (obvious?) overlap between acupuncture and neuromodulation. J Alternative Complementary Med. 2018;24:621–3. https://doi.org/10.1089/acm.2018.29047.vtn
Google Scholar
Napadow V, Kettner N, Liu J, Li M, Kwong KK, Vangel M, et al. Hypothalamus and amygdala response to acupuncture stimuli in carpal tunnel syndrome. Pain. 2007;130:254–66. https://doi.org/10.1016/j.pain.2006.12.003
Google Scholar
Wang X, Wang Z, Liu J, Chen J, Liu X, Nie G, et al. NeuroImage: clinical repeated acupuncture treatments modulate amygdala resting state functional connectivity of depressive patients. NeuroImage: Clin. 2016;12:746–52. https://doi.org/10.1016/j.nicl.2016.07.011
Google Scholar
Fang J, Jin Z, Wang Y, Li K, Kong J, Nixon E, et al. The salient characteristics of the central effects of acupuncture needling: limbic-paralimbic- neocortical network modulation. Hum Brain Mapp. 2009;1206:1196–206. https://doi.org/10.1002/hbm.20583
Google Scholar
Hui KK, Liu J, Marina O, Napadow V, Haselgrove C, Kwong KK, et al. The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 as evidenced by fMRI. NeuroImage. 2005;27:479–96. https://doi.org/10.1016/j.neuroimage.2005.04.037
Google Scholar
Tsao A, Sugar J, Lu L, Wang C, Knierim JJ, Moser MB, et al. Integrating time from experience in the lateral entorhinal cortex. Nature. 2018;561:57–62. https://doi.org/10.1038/s41586-018-0459-6
Google Scholar
Sripada RK, King AP, Welsh RC, Garfinkel SN, Wang X, Sripada CS, et al. Neural dysregulation in posttraumatic stress disorder: evidence for disrupted equilibrium between salience and default mode brain networks. Psychosom Med. 2012;74:904–11.
Google Scholar
Astur RS,ST, Germain SA, Tolin D, Ford J, Russell D, Stevens M. Hippocampus function predicts severity of post-traumatic stress disorder. Cyberpsychology Behav. 2006;9:234–40. https://doi.org/10.1089/cpb.2006.9.234
Google Scholar
Linnman C, Zeffiro TA, Pitman RK, Milad MR. An fMRI study of unconditioned responses in post-traumatic stress disorder. Biol Mood Anxiety Disord. 2011;1:8 https://doi.org/10.1186/2045-5380-1-8
Google Scholar
Garcia R, Spennato G, Nilsson-Todd L, Moreau JL, Deschaux O. Hippocampal low-frequency stimulation and chronic mild stress similarly disrupt fear extinction memory in rats. Neurobiol Learn Mem. 2008;89:560–6. https://doi.org/10.1016/j.nlm.2007.10.005
Google Scholar
Reznikov R, Hamani C. Posttraumatic stress disorder: perspectives for the use of deep brain stimulation. Neuromodulation 2017;20:7–14. https://doi.org/10.1111/ner.12551
Google Scholar
Egorova N, Gollub RL, Kong J. Repeated verum but not placebo acupuncture normalizes connectivity in brain regions dysregulated in chronic pain. NeuroImage: Clin. 2015;9:430–5. https://doi.org/10.1016/j.nicl.2015.09.012
Google Scholar
Tu Y, Ortiz A, Gollub RL, Cao J, Gerber J, Lang C, et al. Multivariate resting-state functional connectivity predicts responses to real and sham acupuncture treatment in chronic low back pain. NeuroImage: Clinical. 2019;23. https://doi.org/10.1016/j.nicl.2019.101885
Yu S, Ortiz A, Gollub RL, Wilson G, Gerber J, Park J, et al. Acupuncture treatment modulates the connectivity of key regions of the descending pain modulation and reward systems in patients with chronic low back pain. J Clin Med. 2020;9:1–16. https://doi.org/10.3390/jcm9061719
Google Scholar
Seidemann R, Duek O, Jia R, Levy I, Harpaz-rotem I. The reward system and post-traumatic stress disorder: does trauma affect the way we interact with positive stimuli? Chronic Stress. 2020;5:1–11. https://doi.org/10.1177/2470547021996006
Google Scholar
Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: Anatomy, function, and relevance to disease. Ann N. Y Acad Sci. 2008;1124:1–38. https://doi.org/10.1196/annals.1440.011
Google Scholar
Kucyi A, Davis KD. The dynamic pain connectome. Trends Neurosci. 2015;38:86–95. https://doi.org/10.1016/j.tins.2014.11.006
Google Scholar
Zandvakili A, Barredo J, Swearingen HR, Zandvakili A, Barredo J, Swearingen HR, et al. Mapping PTSD symptoms to brain networks: a machine learning study. Transl Psychiatry. 2020;10:1–8. https://doi.org/10.1038/s41398-020-00879-2
Google Scholar
Kong J, Ma L, Gollub RL, Wei J, Yang X, Li D, et al. A pilot study of functional magnetic resonance imaging of the brain during manual and electroacupuncture stimulation of acupuncture point (LI-4 Hegu) in normal subjects reveals differential brain activation between methods. J Alternative Complementary Med. 2002;8:411–9.
Google Scholar
Lin YJ, Kung YY, Kuo WJ, Niddam DM, Chou CC, Cheng CM, et al. Effect of acupuncture ‘dose’ on modulation of the default mode network of the brain. Acupuncture Medicine. 2016:425–32. https://doi.org/10.1136/acupmed-2016-011071
Zhang Y, Zhang H, Nierhaus T, Pach D, Witt CM, Kettner NW. Default mode network as a neural substrate of acupuncture: evidence, challenges and strategy. Front Neurosci. 2019;13:1–5. https://doi.org/10.3389/fnins.2019.00100
Google Scholar
Chae Y, Chang DS, Lee SH, Jung WM, Lee IS, Jackson S, et al. Inserting needles into the body: a meta-analysis of brain activity associated with acupuncture needle stimulation. J Pain. 2013;14:215–22. https://doi.org/10.1016/j.jpain.2012.11.011
Google Scholar
Wang G, Tian Y, Jia S, Zhou W, Zhang W. Acupuncture regulates the heart rate variability. JAMS J Acupunct Meridian Stud. 2015;8:94–98. https://doi.org/10.1016/j.jams.2014.10.009
Google Scholar
Hollifield M. Acupuncture for posttraumatic stress disorder: conceptual, clinical, and biological data support further research. CNS Neurosci Therapeutics. 2011;17:769–79. https://doi.org/10.1111/j.1755-5949.2011.00241.x
Google Scholar
Liu P, Zhang Y, Zhou G, Yuan K, Qin W, Zhuo L, et al. Partial correlation investigation on the default mode network involved in acupuncture: An fMRI study. Neurosci Lett. 2009;462:183–7. https://doi.org/10.1016/j.neulet.2009.07.015
Google Scholar
Cao J, Tu Y, Orr SP, Lang C, Park J, Vangel M, et al. Analgesic effects evoked by real and imagined acupuncture: a neuroimaging study. Cereb Cortex. 2019;29:3220–31.
Google Scholar
Frey U, Morris RG. synaptic tagging and long-term potentiation. Nature 1997;385:533–6.
Google Scholar
Dunsmoor JE, Murty VP, Davachi L, Phelps EA. Emotional learning selectively and retroactively strengthens memories for related events. Nature. 2015;520:345–8. https://doi.org/10.1038/nature14106
Google Scholar
Parsons RG, Ressler KJ. Implications of memory modulation for post-traumatic stress and fear disorders. Nat Neurosci. 2013;16:146–53. https://doi.org/10.1038/nn.3296
Google Scholar
Morgan L. MDMA-assisted psychotherapy for people diagnosed with treatment-resistant PTSD: What it is and what it isn’t. Ann Gen Psychiatry. 2020;19:1–7. https://doi.org/10.1186/s12991-020-00283-6
Google Scholar
Kardiner A, Spiegel H. War stress and neurotic illness. P.B. Hoeber; 1947.