Truby, R. L. & Lewis, J. A. Printing soft matter in three dimensions. Nature 540, 371–378 (2016).
Google Scholar
Guzzi, E. A. & Tibbitt, M. W. Additive manufacturing of precision biomaterials. Adv. Mater. 32, 1901994 (2020).
Google Scholar
Li, J., Wu, C., Chu, P. K. & Gelinsky, M. 3D printing of hydrogels: rational design strategies and emerging biomedical applications. Mater. Sci. Eng. R: Rep. 140, 100543 (2020).
Google Scholar
Blaiszik, B. J. et al. Self-healing polymers and composites. Annu. Rev. Mater. Res. 40, 179–211 (2010).
Google Scholar
Yang, Y. & Urban, M. W. Self-healing of polymers via supramolecular chemistry. Adv. Mater. Interfaces 5, 1800384 (2018).
Google Scholar
Campanella, A., Döhler, D. & Binder, W. H. Self-healing in supramolecular polymers. Macromol. Rapid Commun. 39, 1700739 (2018).
Google Scholar
Dahlke, J., Zechel, S., Hager, M. D. & Schubert, U. S. How to design a self-healing polymer: general concepts of dynamic covalent bonds and their application for intrinsic healable materials. Adv. Mater. Interfaces 5, 1800051 (2018).
Google Scholar
Zhang, Z. P., Rong, M. Z. & Zhang, M. Q. Polymer engineering based on reversible covalent chemistry: a promising innovative pathway towards new materials and new functionalities. Prog. Polym. Sci. 80, 39–93 (2018).
Google Scholar
Zhou, L. Y., Fu, J. & He, Y. A review of 3D printing technologies for soft polymer materials. Adv. Funct. Mater. 30, 2000187 (2020).
Google Scholar
Yang, Y. & Urban, M. W. Self-healing polymeric materials. Chem. Soc. Rev. 42, 7446–7467 (2013).
Google Scholar
Qamar, I. P. S., Sottos, N. R. & Trask, R. S. Grand challenges in the design and manufacture of vascular self-healing. Multifunctional Mater. 3, 013001 (2019).
Google Scholar
Diba, M. et al. Self-healing biomaterials: from molecular concepts to clinical applications. Adv. Mater. Interfaces 5, 1–21 (2018).
Google Scholar
Urdl, K. et al. Self-healing of densely crosslinked thermoset polymers—a critical review. Prog. Org. Coat. 104, 232–249 (2017).
Google Scholar
Chen, K. et al. Entanglement-driven adhesion, self-healing, and high stretchability of double-network PEG-based hydrogels. ACS Appl. Mater. Interfaces 11, 36458–36468 (2019).
Google Scholar
Uman, S., Dhand, A. & Burdick, J. A. Recent advances in shear-thinning and self-healing hydrogels for biomedical applications. J. Appl. Polym. Sci. 137, 48668 (2020).
Google Scholar
Talebian, S. et al. Self-healing hydrogels: the next paradigm shift in tissue engineering? Adv. Sci. 6, 1801664 (2019).
Google Scholar
Dragan, E. S. Design and applications of interpenetrating polymer network hydrogels. A review. Chem. Eng. J. 243, 572–590 (2014).
Google Scholar
Mandrycky, C., Wang, Z., Kim, K. & Kim, D. H. 3D bioprinting for engineering complex tissues. Biotechnol. Adv. 34, 422–434 (2016).
Google Scholar
Chen, Q., Chen, H., Zhu, L. & Zheng, J. Fundamentals of double network hydrogels. J. Mater. Chem. B 3, 3654–3676 (2015).
Google Scholar
Heidarian, P., Kouzani, A. Z., Kaynak, A., Paulino, M. & Nasri-Nasrabadi, B. Dynamic hydrogels and polymers as inks for three-dimensional printing. ACS Biomater. Sci. Eng. 5, 2688–2707 (2019).
Google Scholar
Highley, C. B., Rodell, C. B. & Burdick, J. A. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater. 27, 5075–5079 (2015).
Google Scholar
Ouyang, L., Highley, C. B., Rodell, C. B., Sun, W. & Burdick, J. A. 3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking. ACS Biomater. Sci. Eng. 2, 1743–1751 (2016).
Google Scholar
Hong, S. et al. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv. Mater. 27, 4035–4040 (2015).
Google Scholar
Liu, S. & Li, L. Ultrastretchable and self-healing double-network hydrogel for 3D printing and strain sensor. ACS Appl. Mater. Interfaces 9, 26429–26437 (2017).
Google Scholar
Malda, J. et al. 25th Anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25, 5011–5028 (2013).
Google Scholar
Schwab, A. et al. Printability and shape fidelity of bioinks in 3D bioprinting. Chem. Rev. 120, 11028–11055 (2020).
Google Scholar
Li, H., Tan, C. & Li, L. Review of 3D printable hydrogels and constructs. Mater. Des. 159, 20–38 (2018).
Google Scholar
Jungst, T., Smolan, W., Schacht, K., Scheibel, T. & Groll, J. Strategies and molecular design criteria for 3D printable hydrogels. Chem. Rev. 116, 1496–1539 (2016).
Google Scholar
Moroni, L. et al. Biofabrication: a guide to technology and terminology. Trends Biotechnol. 36, 384–402 (2018).
Google Scholar
Lim, K. S. et al. Fundamentals and applications of photo-cross-linking in bioprinting. Chem. Rev. 120, 10662–10694 (2020).
Google Scholar
Ligon, S. C., Liska, R., Stampfl, J., Gurr, M. & Mülhaupt, R. Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 117, 10212–10290 (2017).
Google Scholar
Ligon-Auer, S. C., Schwentenwein, M., Gorsche, C., Stampfl, J. & Liska, R. Toughening of photo-curable polymer networks: a review. Polym. Chem. 7, 257–286 (2016).
Google Scholar
Bagheri, A. & Jin, J. Photopolymerization in 3D Printing. ACS Appl. Polym. Mater. 1, 593–611 (2019).
Google Scholar
Yu, C. et al. Photopolymerizable biomaterials and light-based 3D printing strategies for biomedical applications. Chem. Rev. 120, 10695–10743 (2020).
Google Scholar
Mondschein, R. J., Kanitkar, A., Williams, C. B., Verbridge, S. S. & Long, T. E. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Biomaterials 140, 170–188 (2017).
Google Scholar
Taylor, D. L. & In Het Panhuis, M. Self-healing hydrogels. Adv. Mater. 28, 9060–9093 (2016).
Google Scholar
Kim, C. & Yoshie, N. Polymers healed autonomously and with the assistance of ubiquitous stimuli: how can we combine mechanical strength and a healing ability in polymers? Polym. J. 50, 919–929 (2018).
Google Scholar
Chartrain, N. A., Williams, C. B. & Whittington, A. R. A review on fabricating tissue scaffolds using vat photopolymerization. Acta Biomaterialia 74, 90–111 (2018).
Google Scholar
Tuncaboylu, D. C., Argun, A., Algi, M. P. & Okay, O. Autonomic self-healing in covalently crosslinked hydrogels containing hydrophobic domains. Polymer 54, 6381–6388 (2013).
Google Scholar
Gyarmati, B., Szilágyi, B. Á. & Szilágyi, A. Reversible interactions in self-healing and shape memory hydrogels. Eur. Polym. J. 93, 642–669 (2017).
Google Scholar
Zhang, B. et al. Self-healing four-dimensional printing with an ultraviolet curable double-network shape memory polymer system. ACS Appl. Mater. Interfaces 11, 10328–10336 (2019).
Google Scholar
Invernizzi, M., Turri, S., Levi, M. & Suriano, R. 4D printed thermally activated self-healing and shape memory polycaprolactone-based polymers. Eur. Polym. J. 101, 169–176 (2018).
Google Scholar
Liu, Z. et al. Self-healing, reprocessing and 3D printing of transparent and hydrolysis-resistant silicone elastomers. Chem. Eng. J. 387, 124142 (2020).
Google Scholar
Yu, K., Xin, A., Du, H., Li, Y. & Wang, Q. Additive manufacturing of self-healing elastomers. NPG Asia Mater. 11, 7 (2019).
Zhang, H., Xia, H. & Zhao, Y. Poly(vinyl alcohol) hydrogel can autonomously self-heal. ACS Macro Lett. 1, 1233–1236 (2012).
Google Scholar
Li, G., Zhang, H., Fortin, D., Xia, H. & Zhao, Y. Poly(vinyl alcohol)-poly(ethylene glycol) double-network hydrogel: a general approach to shape memory and self-healing functionalities. Langmuir 31, 11709–11716 (2015).
Google Scholar
Gong, Z. et al. High-strength, tough, fatigue resistant, and self-healing hydrogel based on dual physically cross-linked network. ACS Appl. Mater. Interfaces 8, 24030–24037 (2016).
Google Scholar
Shin, S. H. et al. Ion-conductive self-healing hydrogels based on an interpenetrating polymer network for a multimodal sensor. Chem. Eng. J. 371, 452–460 (2019).
Google Scholar
Pawar, A. A. et al. High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles. Sci. Adv. 2, e1501381–e1501381 (2016).
Google Scholar
Alves, M. H., Jensen, B. E. B., Smith, A. A. A. & Zelikin, A. N. Poly(vinyl alcohol) physical hydrogels: new vista on a long serving biomaterial. Macromol. Biosci. 11, 1293–1313 (2011).
Google Scholar
Karaogul, E., Altuntas, E., Salan, T. & Hakki Alma, M. The Effects of Novel Additives Used in PVA/Starch Biohybrid Films. in Fillers – Synthesis, Characterization and Industrial Application, Vol. i 13 (IntechOpen, 2019).
Larush, L. et al. 3D printing of responsive hydrogels for drug-delivery systems. J. 3D Print. Med. 1, 219–229 (2017).
Google Scholar
Han, D. et al. Soft robotic manipulation and locomotion with a 3D printed electroactive hydrogel. ACS Appl. Mater. Interfaces 10, 17512–17518 (2018).
Google Scholar
Liu, T. et al. Super-strong and tough poly(vinyl alcohol)/poly(acrylic acid) hydrogels reinforced by hydrogen bonding. J. Mater. Chem. B 6, 8105–8114 (2018).
Google Scholar
Wang, J. et al. All-in-one cellulose nanocrystals for 3D printing of nanocomposite hydrogels. Angew. Chem. – Int. Ed. 57, 2353–2356 (2018).
Google Scholar
Noè, C., Tonda-Turo, C., Chiappone, A., Sangermano, M. & Hakkarainen, M. Light processable starch hydrogels. Polymers 12, 1359 (2020).
Google Scholar
Lim, K. S. et al. Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs. Biofabrication 10, 034101 (2018).
Google Scholar
Gastaldi, M. et al. Functional dyes in polymeric 3D printing: applications and perspectives. ACS Mater. Lett. 3, 1–17 (2021).
Google Scholar
Parente, M. E., Ochoa Andrade, A., Ares, G., Russo, F. & Jiménez-Kairuz, Á. Bioadhesive hydrogels for cosmetic applications. Int. J. Cosmet. Sci. 37, 511–518 (2015).
Google Scholar
Zhu, M., Liu, J., Gan, L. & Long, M. Research progress in bio-based self-healing materials. Eur. Polym. J. 129, 109651 (2020).
Google Scholar
Tavakoli, J. & Tang, Y. Hydrogel based sensors for biomedical applications: an updated review. Polymers 9, 364 (2017).
Google Scholar
Adam Bilodeau, R. & Kramer, R. K. Self-healing and damage resilience for soft robotics: a review. Front. Robotics AI 4, 48 (2017).
Sachyani Keneth, E., Kamyshny, A., Totaro, M., Beccai, L. & Magdassi, S. 3D Printing MAterials for Soft Robotics. Adv. Mater. in press, 2003387 (2020).
Chen, D. et al. Self-healing materials for next-generation energy harvesting and storage devices. Adv. Energy Mater. 7, 1700890 (2017).
Google Scholar